Partager

Publications

Sont listées ci-dessous, par année, les publications figurant dans l'archive ouverte HAL.

2021

  • Exposure to the Methylselenol Precursor Dimethyldiselenide Induces a Reductive Endoplasmic Reticulum Stress in Saccharomyces cerevisiae
    • Dauplais Marc
    • Mahou Pierre
    • Plateau Pierre
    • Lazard Myriam
    International Journal of Molecular Sciences, MDPI, 2021, 22 (11), pp.5467. Methylselenol (MeSeH) is a major cytotoxic metabolite of selenium, causing apoptosis in cancer cells through mechanisms that remain to be fully established. Previously, we demonstrated that, in Saccharomyces cerevisiae, MeSeH toxicity was mediated by its metabolization into selenomethionine by O-acetylhomoserine (OAH)-sulfhydrylase, an enzyme that is absent in higher eukaryotes. In this report, we used a mutant met17 yeast strain, devoid of OAH- sulfhydrylase activity, to identify alternative targets of MeSeH. Exposure to dimethyldiselenide (DMDSe), a direct precursor of MeSeH, caused an endoplasmic reticulum (ER) stress, as evidenced by increased expression of the ER chaperone Kar2p. Mutant strains (∆ire1 and ∆hac1) unable to activate the unfolded protein response were hypersensitive to MeSeH precursors but not to selenomethionine. In contrast, deletion of YAP1 or SKN7, required to activate the oxidative stress response, did not affect cell growth in the presence of DMDSe. ER maturation of newly synthesized carboxypeptidase Y was impaired, indicating that MeSeH/DMDSe caused protein misfolding in the ER. Exposure to DMDSe resulted in induction of the expression of the ER oxidoreductase Ero1p with concomitant reduction of its regulatory disulfide bonds. These results suggest that MeSeH disturbs protein folding in the ER by generating a reductive stress in this compartment. (10.3390/ijms22115467)
    DOI : 10.3390/ijms22115467
  • GeNePy3D: a quantitative geometry python toolbox for bioimaging
    • Phan Minh-Son
    • Chessel Anatole
    F1000Research, Faculty of 1000, 2021. The advent of large-scale fluorescence and electronic microscopy techniques along with maturing image analysis is giving life sciences a deluge of geometrical objects in 2D/3D(+t) to deal with. These objects take the form of large scale, localised, precise, single cell, quantitative data such as cells’ positions, shapes, trajectories or lineages, axon traces in whole brains atlases or varied intracellular protein localisations, often in multiple experimental conditions. The data mining of those geometrical objects requires a variety of mathematical and computational tools of diverse accessibility and complexity. Here we present a new Python library for quantitative 3D geometry called GeNePy3D which helps handle and mine information and knowledge from geometric data, providing a unified application programming interface (API) to methods from several domains including computational geometry, scale space methods or spatial statistics. By framing this library as generically as possible, and by linking it to as many state-of-the-art reference algorithms and projects as needed, we help render those often specialist methods accessible to a larger community. We exemplify the usefulness of the GeNePy3D toolbox by re-analysing a recently published whole-brain zebrafish neuronal atlas, with other applications and examples available online. Along with an open source, documented and exemplified code, we release reusable containers to allow for convenient and wide usability and increased reproducibility. (10.12688/f1000research.27395.2)
    DOI : 10.12688/f1000research.27395.2
  • Drivers of i-DNA Formation in a Variety of Environments Revealed by Four-Dimensional UV Melting and Annealing
    • Cheng Mingpan
    • Chen Jielin
    • Ju Huangxian
    • Zhou Jun
    • Mergny Jean-Louis
    Journal of the American Chemical Society, American Chemical Society, 2021, 143, pp.7792-7807. i-DNA is a four-stranded, pH-sensitive structure formed by cytosine-rich DNA sequences. Previous reports have addressed the conditions for formation of this motif in DNA in vitro and validated its existence in human cells. Unfortunately, these in vitro studies have often been performed under different experimental conditions, making comparisons difficult. To overcome this, we developed a four-dimensional UV melting and annealing (4DUVMA) approach to analyze i-DNA formation under a variety of conditions (e.g., pH, temperature, salt, crowding). Analysis of 25 sequences provided a global understanding of i-DNA formation under disparate conditions, which should ultimately allow the design of accurate prediction tools. For example, we found reliable linear correlations between the mid-point of pH transition and temperature (-0.04 ± 0.003 pH unit per 1.0 °C temperature increment) and between the melting temperature and pH (-23.8 ± 1.1 °C per pH unit increment). In addition, by analyzing the hysteresis between denaturing and renaturing profiles in both pH and thermal transitions, we found that loop length, nature of the C-tracts, pH, temperature, and crowding agents all play roles in i-DNA folding kinetics. Interestingly, our data indicate which conformer is more favorable for the sequences with an odd number of cytosine base pairs. Then the h m l pH l f " "-DNAs from human promoter genes were measured under near physiological conditions (pH 7.0, 37 °C). The 4DUVMA method can become a universal resource to analysis the properties of any i-DNA-prone sequence. (10.1021/jacs.1c02209)
    DOI : 10.1021/jacs.1c02209
  • Fluorescent iron‑sulfur centers: Photochemistry of the PetA Rieske protein from Aquifex aeolicus
    • Vos Marten H.
    • Salman Mayla
    • Ramodiharilafy Rivo
    • Liebl Ursula
    Biochimica biophysica acta (BBA) - Bioenergetics, Elsevier, 2021, 1862 (5), pp.148385. Cytochrome bc1 complexes are energy-transducing enzymes and key components of respiratory electron chains. They contain Rieske 2Fe-2S proteins that absorb very weakly in the visible absorption region compared to the heme cofactors of the cytochromes, but are known to yield photoproducts. Here, the photoreactions of isolated Rieske proteins from the hyperthermophilic bacterium Aquifex aeolicus are studied in two redox states using ultrafast transient fluorescence and absorption spectroscopy. We provide evidence, for the first time in iron-sulfur proteins, of very weak fluorescence of the excited state, in the oxidized as well as the reduced state. The excited states of the oxidized and reduced forms decay in 1.5 ps and 30 picoseconds, respectively. In both cases they give rise to product states with lifetimes beyond 1 nanosecond, reflecting photo-reduction of oxidized centers as well as photo-oxidation of reduced centers. Potential reaction partners are discussed and studied using site-directed mutagenesis. For the reduced state, a nearby disulfide bridge is suggested as an electron acceptor. The resulting photoproducts in either state may play a role in photoactivation processes. (10.1016/j.bbabio.2021.148385)
    DOI : 10.1016/j.bbabio.2021.148385
  • Mechanism and dynamics of fatty acid photodecarboxylase
    • Sorigué Damien
    • Hadjidemetriou Kyprianos
    • Blangy S.
    • Gotthard G.
    • Bonvalet A.
    • Coquelle Nicolas
    • Samire P.
    • Aleksandrov Alexey
    • Antonucci L.
    • Benachir A.
    • Boutet S.
    • Byrdin Martin
    • Cammarata Marco
    • Carbajo S.
    • Cuine Stephan
    • Doak R.
    • Foucar L.
    • Gorel A.
    • Grünbein M.
    • Hartmann E.
    • Hienerwadel Rainer
    • Hilpert M.
    • Kloos M.
    • Lane T.
    • Légeret B.
    • Legrand P.
    • Li-Beisson Y.
    • Moulin S.
    • Nurizzo D.
    • Peltier G.
    • Schirò Giorgio
    • Shoeman R.
    • Sliwa M.
    • Solinas X.
    • Zhuang B.
    • Barends T.
    • Colletier Jacques-Philippe
    • Joffre M.
    • Royant Antoine
    • Berthomieu C.
    • Weik Martin
    • Domratcheva T.
    • Brettel K.
    • Vos Marten H.
    • Schlichting I.
    • Arnoux Pascal
    • Müller P.
    • Beisson F.
    Science, American Association for the Advancement of Science (AAAS), 2021, 372 (6538), pp.eabd5687. Fatty acid photodecarboxylase (FAP) is a photoenzyme with potential green chemistry applications. By combining static, time-resolved, and cryotrapping spectroscopy and crystallography as well as computation, we characterized FAP reaction intermediates on time scales from subpicoseconds to milliseconds. High-resolution crystal structures from synchrotron and free electron laser x-ray sources highlighted an unusual bent shape of the oxidized flavin chromophore. We demonstrate that decarboxylation occurs directly upon reduction of the excited flavin by the fatty acid substrate. Along with flavin reoxidation by the alkyl radical intermediate, a major fraction of the cleaved carbon dioxide unexpectedly transformed in 100 nanoseconds, most likely into bicarbonate. This reaction is orders of magnitude faster than in solution. Two strictly conserved residues, R451 and C432, are essential for substrate stabilization and functional charge transfer. (10.1126/science.abd5687)
    DOI : 10.1126/science.abd5687
  • Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain
    • Dray Nicolas
    • Mancini Laure
    • Binshtok Udi
    • Cheysson Felix
    • Supatto Willy
    • Mahou Pierre
    • Bedu Sébastien
    • Ortica Sara
    • Than-Trong Emmanuel
    • Krecsmarik Monika
    • Herbert Sébastien
    • Masson Jean-Baptiste
    • Tinevez Jean-Yves
    • Lang Gabriel
    • Beaurepaire Emmanuel
    • Sprinzak David
    • Bally-Cuif Laure
    Cell Stem Cell, Cambridge, MA : Cell Press, 2021, 28 (8), pp.1-16. Neural stem cell (NSC) populations persist in the adult vertebrate brain over a lifetime, and their homeostasis is controlled at the population level through unknown mechanisms. Here, we combine dynamic imaging of entire NSC populations in their in vivo niche over several weeks with pharmacological manipulations, mathematical modeling, and spatial statistics and demonstrate that NSCs use spatiotemporally resolved local feedback signals to coordinate their decision to divide in adult zebrafish brains. These involve Notch-mediated short-range inhibition from transient neural progenitors and a dispersion effect from the dividing NSCs themselves exerted with a delay of 9–12 days. Simulations from a stochastic NSC lattice model capturing these interactions demonstrate that these signals are linked by lineage progression and control the spatiotemporal distribution of output neurons. These results highlight how local and temporally delayed interactions occurring between brain germinal cells generate self-propagating dynamics that maintain NSC population homeostasis and coordinate specific spatiotemporal correlations. (10.1016/j.stem.2021.03.014)
    DOI : 10.1016/j.stem.2021.03.014
  • Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection
    • Bohálová Natália
    • Cantara Alessio
    • Bartas Martin
    • Kaura Patrik
    • Šťastný Jiří
    • Pečinka Petr
    • Fojta Miroslav
    • Mergny Jean‐louis
    • Brázda Václav
    Biochimie, Elsevier, 2021, 186, pp.13-27. (10.1016/j.biochi.2021.03.017)
    DOI : 10.1016/j.biochi.2021.03.017
  • Exploration of head-to-tail and head-to-head isomers of a guanine quadruplex platinum-based binder
    • Carson Jacob Joel Kirsh
    • Miron Caitlin Elizabeth
    • Luo Jingwei
    • Mergny Jean‐louis
    • van Staalduinen Laura
    • Jia Zongchao
    • Petitjean Anne
    Inorganica Chimica Acta Reviews, Elsevier, 2021, 518, pp.120236. (10.1016/j.ica.2020.120236)
    DOI : 10.1016/j.ica.2020.120236
  • Mueller polarimetric imaging for fast macroscopic mapping of microscopic collagen matrix remodeling by smooth muscle cells
    • Chashchina Olga
    • Mezouar Hachem
    • Vizet Jérémy
    • Raoux Clothilde
    • Park Junha
    • Ramón-Lozano Clara
    • Schanne-Klein Marie-Claire
    • Barakat Abdul I
    • Pierangelo Angelo
    Scientific Reports, Nature Publishing Group, 2021, 11. Smooth muscle cells (SMCs) are critical players in cardiovascular disease development and undergo complex phenotype switching during disease progression. However, SMC phenotype is difficult to assess and track in co-culture studies. To determine the contractility of SMCs embedded within collagen hydrogels, we performed polarized light imaging and subsequent analysis based on Mueller matrices. Measurements were made both in the absence and presence of endothelial cells (ECs) in order to establish the impact of EC-SMC communication on SMC contractility. The results demonstrated that Mueller polarimetric imaging is indeed an appropriate tool for assessing SMC activity which significantly modifies the hydrogel retardance in the presence of ECs. These findings are consistent with the idea that EC-SMC communication promotes a more contractile SMC phenotype. More broadly, our findings suggest that Mueller polarimetry can be a useful tool for studies of spatial heterogeneities in hydrogel remodeling by SMCs. (10.1038/s41598-021-85164-y)
    DOI : 10.1038/s41598-021-85164-y
  • Ultrafast dynamics of heme distortion in the O2-sensor of a thermophilic anaerobe bacterium
    • Petrova Olga N
    • Yoo Byung-Kuk
    • Lamarre Isabelle
    • Selles Julien
    • Nioche Pierre
    • Negrerie Michel
    Communications Chemistry, Nature Research, 2021, 4 (1). Heme-Nitric oxide and Oxygen binding protein domains (H-NOX) are found in signaling pathways of both prokaryotes and eukaryotes and share sequence homology with soluble guanylate cyclase, the mammalian NO receptor. In bacteria, H-NOX is associated with kinase or methyl accepting chemotaxis domains. In the O2-sensor of the strict anaerobe Caldanaerobacter tengcongensis (Ct H-NOX) the heme appears highly distorted after O2 binding, but the role of heme distortion in allosteric transitions was not yet evidenced. Here, we measure the dynamics of the heme distortion triggered by the dissociation of diatomics from Ct H-NOX using transient electronic absorption spectroscopy in the picosecond to millisecond time range. We obtained a spectroscopic signature of the heme flattening upon O2 dissociation. The heme distortion is immediately (<1 ps) released after O2 dissociation to produce a relaxed state. This heme conformational change occurs with different proportions depending on diatomics as follows: CO < NO < O2. Our time-resolved data demonstrate that the primary structural event of allostery is the heme distortion in the Ct H-NOX sensor, contrastingly with hemoglobin and the human NO receptor, in which the primary structural events are respectively the motion of the proximal histidine and the rupture of the iron-histidine bond. (10.1038/s42004-021-00471-9)
    DOI : 10.1038/s42004-021-00471-9
  • Ligand Binding to Dynamically Populated G‐Quadruplex DNA
    • Aznauryan Mikayel
    • Noer Sofie Louise
    • Pedersen Camilla
    • Mergny Jean‐louis
    • Teulade-Fichou Marie‐paule
    • Birkedal Victoria
    ChemBioChem, Wiley-VCH Verlag, 2021, 22 (10), pp.1811-1817. Several small‐molecule ligands specifically bind and stabilize G‐quadruplex (G4) nucleic acid structures, which are considered to be promising therapeutic targets. G4s are polymorphic structures of varying stability, and their formation is dynamic. Here, we investigate the mechanisms of ligand binding to dynamically populated human telomere G4 DNA by using the bisquinolinium based ligand Phen‐DC3 and a combination of single‐molecule FRET microscopy, ensemble FRET and CD spectroscopies. Different cations are used to tune G4 polymorphism and folding dynamics. We find that ligand binding occurs to pre‐folded G4 structures and that Phen‐DC3 also induces G4 formation in unfolded single strands. Following ligand binding to dynamically populated G4s, the DNA undergoes pronounced conformational redistributions that do not involve direct ligand‐induced G4 conformational interconversion. On the contrary, the redistribution is driven by ligand‐induced G4 folding and trapping of dynamically populated short‐lived conformation states. Thus, ligand‐induced stabilization does not necessarily require the initial presence of stably folded G4s. (10.1002/cbic.202000792)
    DOI : 10.1002/cbic.202000792
  • Influence of core extension and side chain nature in targeting G-quadruplex structures with perylene monoimide derivatives
    • Busto Natalia
    • García-Calvo José
    • Cuevas José Vicente
    • Herrera Antonio
    • Mergny Jean-Louis
    • Pons Sebastian
    • Torroba Tomás
    • García Begoña
    Bioorganic Chemistry, Elsevier, 2021, 108 (18), pp.104660. Abstract Recent studies indicate that i‐DNA, a four‐stranded cytosine‐rich DNA also known as the i‐motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3–6 cytosines with different spacer lengths has been tested. While i‐DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C‐tracts at both acidic and neutral pHs. This study provides a global picture on i‐DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i‐DNA stability do not mirror those of G‐quadruplexes. Our results illustrate the structural roles of loops and C‐tracts on i‐DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability. (10.1016/j.bioorg.2021.104660)
    DOI : 10.1016/j.bioorg.2021.104660
  • Characterization of Light-Induced, Short-Lived Interacting Radicals in the Active Site of Flavoprotein Ferredoxin-NADP + Oxidoreductase
    • Zhuang Bo
    • Seo Daisuke
    • Aleksandrov Alexey
    • Vos Marten H.
    Journal of the American Chemical Society, American Chemical Society, 2021, 143 (7), pp.2757-2768. Radicals of flavin adenine dinucleotide (FAD), as well as tyrosine and tryptophan, are widely involved as key reactive intermediates during electron transfer (ET) reactions in flavoproteins. Due to the high reactivity of these species, and their corresponding short lifetime, characterization of these intermediates in functional processes of flavoproteins is usually challenging, but can be achieved by ultrafast spectroscopic studies of light-activatable flavoproteins. In ferredoxin-NADP + oxidoreductase from Bacillus subtilis (BsFNR), fluorescence of the FAD cofactor that very closely interacts with a neighboring tyrosine residue (Tyr50), is strongly quenched. Here we study short-lived photoproducts of this enzyme and its variants with Tyr50 replaced by tryptophan or glycine. Using time-resolved fluorescence and absorption spectroscopies, we show that upon the excitation of WT BsFNR, ultrafast ET from Tyr50 to the excited FAD cofactor occurs in ~260 fs, an order of magnitude faster than the decay by charge recombination, facilitating the characterization of the reaction intermediates in the charge-separated state with respect to other recently studied systems. These studies are corroborated by experiments on the Y50W mutant protein, which yield photoproducts qualitatively similar to those observed in other tryptophan bearing flavoproteins. By combining the experimental results with molecular dynamics simulations and quantum mechanics calculations, we investigate in detail the effect of protein environment and relaxations on the spectral properties of those radical intermediates, and demonstrate that the spectral features of radical anionic FAD are highly sensitive to its environment, and in particular to the dynamics and nature of the counter-ions formed in the photoproducts. Altogether, comprehensive characterizations are provided for important radical intermediates that are generally involved in functional processes of flavoproteins. (10.1021/jacs.0c09627)
    DOI : 10.1021/jacs.0c09627
  • Effects of sequence and base composition on the CD and TDS profiles of i-DNA
    • Iaccarino Nunzia
    • Cheng Mingpan
    • Qiu Dehui
    • Pagano Bruno
    • Amato Jussara
    • Porzio Anna Di
    • Zhou Jun
    • Randazzo Antonio
    • Mergny Jean‐louis
    Angewandte Chemie International Edition, Wiley-VCH Verlag, 2021, 60, pp.10295-10303. (10.1002/anie.202016822)
    DOI : 10.1002/anie.202016822
  • Identification of the vibrational marker of tyrosine cation radical using ultrafast transient infrared spectroscopy of flavoprotein systems
    • Pirisi Katalin
    • Nag Lipsa
    • Fekete Zsuzsanna
    • Iuliano James N
    • Tolentino Collado Jinnette
    • Clark Ian P
    • Pécsi Ildikó
    • Sournia Pierre
    • Liebl Ursula
    • Greetham Gregory M
    • Tonge Peter J
    • Meech Stephen R
    • Vos Marten H.
    • Lukacs Andras
    Photochemical & Photobiological Sciences, Springer, 2021. Tryptophan and tyrosine radical intermediates play crucial roles in many biological charge transfer processes. Particularly in flavoprotein photochemistry, short-lived reaction intermediates can be studied by the complementary techniques of ultrafast visible and infrared spectroscopy. The spectral properties of tryptophan radical are well established, and the formation of neutral tyrosine radicals has been observed in many biological processes. However, only recently, the formation of a cation tyrosine radical was observed by transient visible spectroscopy in a few systems. Here, we assigned the infrared vibrational markers of the cationic and neutral tyrosine radical at 1483 and 1502 cm −1 (in deuterated buffer), respectively, in a variant of the bacterial methyl transferase TrmFO, and in the native glucose oxidase. In addition, we studied a mutant of AppABLUF blue-light sensor domain from Rhodobacter sphaeroides in which only a direct formation of the neutral radical was observed. Our studies highlight the exquisite sensitivity of transient infrared spectroscopy to low concentrations of specific radicals. (10.1007/s43630-021-00024-y)
    DOI : 10.1007/s43630-021-00024-y
  • The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD
    • Gargaun Elena
    • Falcone Sestina
    • Sole Guilhem
    • Durigneux Julien
    • Urtizberea Andoni
    • Cuisset Jean Marie
    • Benkhelifa-Ziyyat Sofia
    • Julien Laura
    • Boland Anne
    • Sandron Florian
    • Meyer Vincent
    • Deleuze Jean François
    • Salgado David
    • Desvignes Jean-Pierre
    • Béroud Christophe
    • Chessel Anatole
    • Blesius Alexia
    • Krahn Martin
    • Levy Nicolas
    • Leturcq France
    • Pietri-Rouxel France
    Biomedicines, MDPI, 2021, 9 (2), pp.219. In skeletal muscle, long noncoding RNAs (lncRNAs) are involved in dystrophin protein stabilization but also in the regulation of myocytes proliferation and differentiation. Hence, they could represent promising therapeutic targets and/or biomarkers for Duchenne and Becker muscular dystrophy (DMD/BMD). DMD and BMD are X-linked myopathies characterized by a progressive muscular dystrophy with or without dilatative cardiomyopathy. Two-thirds of DMD gene mutations are represented by deletions, and 63% of patients carrying DMD deletions are eligible for 45 to 55 multi-exons skipping (MES), becoming BMD patients (BMDΔ45-55). We analyzed the genomic lncRNA presence in 38 BMDΔ45-55 patients and characterized the lncRNA localized in introns 44 and 55 of the DMD gene. We highlighted that all four lncRNA are differentially expressed during myogenesis in immortalized and primary human myoblasts. In addition, the lncRNA44s2 was pointed out as a possible accelerator of differentiation. Interestingly, lncRNA44s expression was associated with a favorable clinical phenotype. These findings suggest that lncRNA44s2 could be involved in muscle differentiation process and become a potential disease progression biomarker. Based on these results, we support MES45-55 therapy and propose that the design of the CRISPR/Cas9 MES45-55 assay consider the lncRNA sequences bordering the exonic 45 to 55 deletion. (10.3390/biomedicines9020219)
    DOI : 10.3390/biomedicines9020219
  • Thermal and pH stabilities of i-DNA: confronting in vitro experiments with models and in-cell NMR data
    • Cheng Mingpan
    • Qiu Dehui
    • Tamon Liezel
    • Ištvánková Eva
    • Víšková Pavlína
    • Amrane Samir
    • Guédin Aurore
    • Chen Jielin
    • Lacroix Laurent
    • Ju Huangxian
    • Trantírek Lukáš
    • Sahakyan Aleksandr B
    • Zhou Jun
    • Mergny Jean‐louis
    Angewandte Chemie International Edition, Wiley-VCH Verlag, 2021, 60, pp.10286-10294. (10.1002/anie.202016801)
    DOI : 10.1002/anie.202016801
  • Rapid Evaluation of Novel Therapeutic Strategies Using a 3D Collagen-Based Tissue-Like Model
    • Maury Pauline
    • Porcel Erika
    • Mau Adrien
    • Lux François
    • Tillement Olivier
    • Mahou Pierre
    • Schanne-Klein Marie-Claire
    • Lacombe Sandrine
    Frontiers in Bioengineering and Biotechnology, Frontiers, 2021. 2D cell cultures are commonly used to rapidly evaluate the therapeutic potential of various treatments on living cells. However, the effects of the extracellular matrix (ECM) including the 3D arrangement of cells and the complex physiology of native environment are missing, which makes these models far from in vivo conditions. 3D cell models have emerged in preclinical studies to simulate the impact of the ECM and partially bridge the gap between monolayer cultures and in vivo tissues. To date, the difficulty to handle the existing 3D models, the cost of their production and their poor reproducibility have hindered their use. Here, we present a reproducible and commercially available “3D cell collagen-based model” (3D-CCM) that allows to study the influence of the matrix on nanoagent uptake and radiation effects. The cell density in these samples is homogeneous. The oxygen concentration in the 3D-CCM is tunable, which opens the opportunity to investigate hypoxic effects. In addition, thanks to the intrinsic properties of the collagen, the second harmonic imaging microscopy may be used to probe the whole volume and visualize living cells in real-time. Thus, the architecture and composition of 3D-CCMs as well as the impact of various therapeutic strategies on cells embedded in the ECM is observed directly. Moreover, the disaggregation of the collagen matrix allows recovering of cells without damaging them. It is a major advantage that makes possible single cell analysis and quantification of treatment effects using clonogenic assay. In this work, 3D-CCMs were used to evaluate the correlative efficacies of nanodrug exposure and medical radiation on cells contained in a tumor like sample. A comparison with monolayer cell cultures was performed showing the advantageous outcome and the higher potential of 3D-CCMs. This cheap and easy to handle approach is more ethical than in vivo experiments, thus, giving a fast evaluation of cellular responses to various treatments. (10.3389/fbioe.2021.574035)
    DOI : 10.3389/fbioe.2021.574035
  • Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
    • Klionsky Daniel
    • Abdel-Aziz Amal Kamal
    • Abdelfatah Sara
    • Abdellatif Mahmoud
    • Abdoli Asghar
    • Abel Steffen
    • Abeliovich Hagai
    • Abildgaard Marie
    • Abudu Yakubu Princely
    • Acevedo-Arozena Abraham
    • Adamopoulos Iannis
    • Adeli Khosrow
    • Adolph Timon
    • Adornetto Annagrazia
    • Aflaki Elma
    • Agam Galila
    • Agarwal Anupam
    • Aggarwal Bharat
    • Agnello Maria
    • Agostinis Patrizia
    • Agrewala Javed
    • Agrotis Alexander
    • Aguilar Patricia
    • Ahmad S. Tariq
    • Ahmed Zubair
    • Ahumada-Castro Ulises
    • Aits Sonja
    • Aizawa Shu
    • Akkoc Yunus
    • Akoumianaki Tonia
    • Akpinar Hafize Aysin
    • Al-Abd Ahmed
    • Al-Akra Lina
    • Al-Gharaibeh Abeer
    • Alaoui-Jamali Moulay
    • Alberti Simon
    • Alcocer-Gómez Elísabet
    • Alessandri Cristiano
    • Ali Muhammad
    • Alim Al-Bari M. Abdul
    • Aliwaini Saeb
    • Alizadeh Javad
    • Almacellas Eugènia
    • Almasan Alexandru
    • Alonso Alicia
    • Alonso Guillermo
    • Altan-Bonnet Nihal
    • Altieri Dario
    • Álvarez Élida
    • Alves Sara
    • Alves da Costa Cristine
    • Alzaharna Mazen
    • Amadio Marialaura
    • Amantini Consuelo
    • Amaral Cristina
    • Ambrosio Susanna
    • Amer Amal
    • Ammanathan Veena
    • An Zhenyi
    • Andersen Stig
    • Andrabi Shaida
    • Andrade-Silva Magaiver
    • Andres Allen
    • Angelini Sabrina
    • Ann David
    • Anozie Uche
    • Ansari Mohammad
    • Antas Pedro
    • Antebi Adam
    • Antón Zuriñe
    • Anwar Tahira
    • Apetoh Lionel
    • Apostolova Nadezda
    • Araki Toshiyuki
    • Araki Yasuhiro
    • Arasaki Kohei
    • Araújo Wagner
    • Araya Jun
    • Arden Catherine
    • Arévalo Maria-Angeles
    • Arguelles Sandro
    • Arias Esperanza
    • Arikkath Jyothi
    • Arimoto Hirokazu
    • Ariosa Aileen
    • Armstrong-James Darius
    • Arnauné-Pelloquin Laetitia
    • Aroca Angeles
    • Arroyo Daniela
    • Arsov Ivica
    • Artero Rubén
    • Asaro Dalia Maria Lucia
    • Aschner Michael
    • Ashrafizadeh Milad
    • Ashur-Fabian Osnat
    • Atanasov Atanas
    • Au Alicia
    • Auberger Patrick
    • Auner Holger
    • Aurelian Laure
    • Autelli Riccardo
    • Avagliano Laura
    • Ávalos Yenniffer
    • Aveic Sanja
    • Aveleira Célia Alexandra
    • Avin-Wittenberg Tamar
    • Aydin Yucel
    • Ayton Scott
    • Ayyadevara Srinivas
    • Azzopardi Maria
    • Baba Misuzu
    • Backer Jonathan
    • Backues Steven
    • Bae Dong-Hun
    • Bae Ok-Nam
    • Bae Soo Han
    • Baehrecke Eric
    • Baek Ahruem
    • Baek Seung-Hoon
    • Baek Sung Hee
    • Bagetta Giacinto
    • Bagniewska-Zadworna Agnieszka
    • Bai Hua
    • Bai Jie
    • Bai Xiyuan
    • Bai Yidong
    • Bairagi Nandadulal
    • Baksi Shounak
    • Balbi Teresa
    • Baldari Cosima
    • Balduini Walter
    • Ballabio Andrea
    • Ballester Maria
    • Balazadeh Salma
    • Balzan Rena
    • Bandopadhyay Rina
    • Banerjee Sreeparna
    • Banerjee Sulagna
    • Bánréti Ágnes
    • Bao Yan
    • Baptista Mauricio
    • Baracca Alessandra
    • Barbati Cristiana
    • Bargiela Ariadna
    • Barilà Daniela
    • Barlow Peter
    • Barmada Sami
    • Barreiro Esther
    • Barreto George
    • Bartek Jiri
    • Bartel Bonnie
    • Bartolome Alberto
    • Barve Gaurav
    • Basagoudanavar Suresh
    • Bassham Diane
    • Bast Robert
    • Basu Alakananda
    • Batoko Henri
    • Batten Isabella
    • Baulieu Etienne
    • Baumgarner Bradley
    • Bayry Jagadeesh
    • Beale Rupert
    • Beau Isabelle
    • Beaumatin Florian
    • Bechara Luiz R.G.
    • Beck George
    • Beers Michael
    • Begun Jakob
    • Behrends Christian
    • Behrens Georg M.N.
    • Bei Roberto
    • Bejarano Eloy
    • Bel Shai
    • Behl Christian
    • Belaid Amine
    • Belgareh-Touzé Naïma
    • Bellarosa Cristina
    • Belleudi Francesca
    • Belló Pérez Melissa
    • Bello-Morales Raquel
    • Beltran Jackeline Soares de Oliveira
    • Beltran Sebastián
    • Benbrook Doris Mangiaracina
    • Bendorius Mykolas
    • Benitez Bruno
    • Benito-Cuesta Irene
    • Bensalem Julien
    • Berchtold Martin
    • Berezowska Sabina
    • Bergamaschi Daniele
    • Bergami Matteo
    • Bergmann Andreas
    • Berliocchi Laura
    • Berlioz-Torrent Clarisse
    • Bernard Amélie
    • Berthoux Lionel
    • Besirli Cagri
    • Besteiro Sébastien
    • Betin Virginie
    • Beyaert Rudi
    • Bezbradica Jelena
    • Bhaskar Kiran
    • Bhatia-Kissova Ingrid
    • Bhattacharya Resham
    • Bhattacharya Sujoy
    • Bhattacharyya Shalmoli
    • Bhuiyan Md. Shenuarin
    • Bhutia Sujit Kumar
    • Bi Lanrong
    • Bi Xiaolin
    • Biden Trevor
    • Bijian Krikor
    • Billes Viktor
    • Binart Nadine
    • Bincoletto Claudia
    • Birgisdottir Asa
    • Bjorkoy Geir
    • Blanco Gonzalo
    • Blas-Garcia Ana
    • Blasiak Janusz
    • Blomgran Robert
    • Blomgren Klas
    • Blum Janice
    • Boada-Romero Emilio
    • Boban Mirta
    • Boesze-Battaglia Kathleen
    • Boeuf Philippe
    • Boland Barry
    • Bomont Pascale
    • Bonaldo Paolo
    • Bonam Srinivasa Reddy
    • Bonfili Laura
    • Bonifacino Juan
    • Boone Brian
    • Bootman Martin
    • Bordi Matteo
    • Borner Christoph
    • Bornhauser Beat
    • Borthakur Gautam
    • Bosch Jürgen
    • Bose Santanu
    • Botana Luis
    • Botas Juan
    • Boulanger Chantal
    • Boulton Michael
    • Bourdenx Mathieu
    • Bourgeois Benjamin
    • Bourke Nollaig
    • Bousquet Guilhem
    • Boya Patricia
    • Bozhkov Peter
    • Bozi Luiz
    • Bozkurt Tolga
    • Brackney Doug
    • Brandts Christian
    • Braun Ralf
    • Braus Gerhard
    • Bravo-Sagua Roberto
    • Bravo-San Pedro José M.
    • Brest Patrick
    • Bringer Marie-Agnès
    • Briones-Herrera Alfredo
    • Broaddus V. Courtney
    • Brodersen Peter
    • Brodsky Jeffrey
    • Brody Steven
    • Bronson Paola
    • Bronstein Jeff
    • Brown Carolyn
    • Brown Rhoderick
    • Brum Patricia
    • Brumell John
    • Brunetti-Pierri Nicola
    • Bruno Daniele
    • Bryson-Richardson Robert
    • Bucci Cecilia
    • Buchrieser Carmen
    • Bueno Marta
    • Buitrago-Molina Laura Elisa
    • Buraschi Simone
    • Buch Shilpa
    • Buchan J. Ross
    • Buckingham Erin
    • Budak Hikmet
    • Budini Mauricio
    • Bultynck Geert
    • Burada Florin
    • Burgoyne Joseph
    • Burón M. Isabel
    • Bustos Victor
    • Büttner Sabrina
    • Butturini Elena
    • Byrd Aaron
    • Cabas Isabel
    • Cabrera-Benitez Sandra
    • Cadwell Ken
    • Cai Jingjing
    • Cai Lu
    • Cai Qian
    • Cairó Montserrat
    • Calbet Jose
    • Caldwell Guy
    • Caldwell Kim
    • Call Jarrod
    • Calvani Riccardo
    • Calvo Ana
    • Calvo-Rubio Barrera Miguel
    • Camara Niels Os
    • Camonis Jacques H.
    • Camougrand Nadine
    • Campanella Michelangelo
    • Campbell Edward
    • Campbell-Valois François-Xavier
    • Campello Silvia
    • Campesi Ilaria
    • Campos Juliane
    • Camuzard Olivier
    • Cancino Jorge
    • Candido de Almeida Danilo
    • Canesi Laura
    • Caniggia Isabella
    • Canonico Barbara
    • Cantí Carles
    • Cao Bin
    • Caraglia Michele
    • Caramés Beatriz
    • Carchman Evie
    • Cardenal-Muñoz Elena
    • Cardenas Cesar
    • Cardenas Luis
    • Cardoso Sandra
    • Carew Jennifer
    • Carle Georges F.
    • Carleton Gillian
    • Carloni Silvia
    • Carmona-Gutierrez Didac
    • Carneiro Leticia
    • Carnevali Oliana
    • Carosi Julian
    • Carra Serena
    • Carrier Alice
    • Carrier Lucie
    • Carroll Bernadette
    • Carter A. Brent
    • Carvalho Andreia Neves
    • Casanova Magali
    • Casas Caty
    • Casas Josefina
    • Cassioli Chiara
    • Castillo Eliseo
    • Castillo Karen
    • Castillo-Lluva Sonia
    • Castoldi Francesca
    • Castori Marco
    • Castro Ariel
    • Castro-Caldas Margarida
    • Castro-Hernandez Javier
    • Castro-Obregon Susana
    • Catz Sergio
    • Cavadas Claudia
    • Cavaliere Federica
    • Cavallini Gabriella
    • Cavinato Maria
    • Cayuela Maria
    • Cebollada Rica Paula
    • Cecarini Valentina
    • Cecconi Francesco
    • Cechowska-Pasko Marzanna
    • Cenci Simone
    • Ceperuelo-Mallafré Victòria
    • Cerqueira João
    • Cerutti Janete
    • Cervia Davide
    • Cetintas Vildan Bozok
    • Cetrullo Silvia
    • Chae Han-Jung
    • Chagin Andrei
    • Chai Chee-Yin
    • Chakrabarti Gopal
    • Chakrabarti Oishee
    • Chakraborty Tapas
    • Chakraborty Trinad
    • Chami Mounia
    • Chamilos Georgios
    • Chan David
    • Chan Edmond
    • Chan Edward
    • Chan H.Y. Edwin
    • Chan Helen
    • Chan Hung
    • Chan Matthew T.V.
    • Chan Yau Sang
    • Chandra Partha
    • Chang Chih-Peng
    • Chang Chunmei
    • Chang Hao-Chun
    • Chang Kai
    • Chao Jie
    • Chapman Tracey
    • Charlet-Berguerand Nicolas
    • Chatterjee Samrat
    • Chaube Shail
    • Chaudhary Anu
    • Chauhan Santosh
    • Chaum Edward
    • Checler Frédéric
    • Cheetham Michael
    • Chen Chang-Shi
    • Chen Guang-Chao
    • Chen Jian-Fu
    • Chen Liam
    • Chen Leilei
    • Chen Lin
    • Chen Mingliang
    • Chen Mu-Kuan
    • Chen Ning
    • Chen Quan
    • Chen Ruey-Hwa
    • Chen Shi
    • Chen Wei
    • Chen Weiqiang
    • Chen Xin-Ming
    • Chen Xiong-Wen
    • Chen Xu
    • Chen Yan
    • Chen Ye-Guang
    • Chen Yingyu
    • Chen Yongqiang
    • Chen Yu-Jen
    • Chen Yue-Qin
    • Chen Zhefan Stephen
    • Chen Zhi
    • Chen Zhi-Hua
    • Chen Zhijian
    • Chen Zhixiang
    • Cheng Hanhua
    • Cheng Jun
    • Cheng Shi-Yuan
    • Cheng Wei
    • Cheng Xiaodong
    • Cheng Xiu-Tang
    • Cheng Yiyun
    • Cheng Zhiyong
    • Chen Zhong
    • Cheong Heesun
    • Cheong Jit Kong
    • Chernyak Boris
    • Cherry Sara
    • Cheung Chi Fai Randy
    • Cheung Chun Hei Antonio
    • Cheung King-Ho
    • Chevet Eric
    • Chi Richard
    • Chiang Alan Kwok Shing
    • Chiaradonna Ferdinando
    • Chiarelli Roberto
    • Chiariello Mario
    • Chica Nathalia
    • Chiocca Susanna
    • Chiong Mario
    • Chiou Shih-Hwa
    • Chiramel Abhilash
    • Chiurchiù Valerio
    • Cho Dong-Hyung
    • Choe Seong-Kyu
    • Choi Augustine M.K.
    • Choi Mary
    • Choudhury Kamalika Roy
    • Chow Norman
    • Chu Charleen
    • Chua Jason
    • Chua John Jia En
    • Chung Hyewon
    • Chung Kin Pan
    • Chung Seockhoon
    • Chung So-Hyang
    • Chung Yuen-Li
    • Cianfanelli Valentina
    • Ciechomska Iwona
    • Cifuentes Mariana
    • Cinque Laura
    • Cirak Sebahattin
    • Cirone Mara
    • Clague Michael
    • Clarke Robert
    • Clementi Emilio
    • Coccia Eliana
    • Codogno Patrice
    • Cohen Ehud
    • Cohen Mickael M.
    • Colasanti Tania
    • Colasuonno Fiorella
    • Colbert Robert
    • Colell Anna
    • Čolić Miodrag
    • Coll Nuria
    • Collins Mark
    • Colombo María
    • Colón-Ramos Daniel
    • Combaret Lydie
    • Comincini Sergio
    • Cominetti Márcia
    • Consiglio Antonella
    • Conte Andrea
    • Conti Fabrizio
    • Contu Viorica Raluca
    • Cookson Mark
    • Coombs Kevin
    • Coppens Isabelle
    • Corasaniti Maria Tiziana
    • Corkery Dale
    • Cordes Nils
    • Cortese Katia
    • Costa Maria Do Carmo
    • Costantino Sarah
    • Costelli Paola
    • Coto-Montes Ana
    • Crack Peter
    • Crespo Jose
    • Criollo Alfredo
    • Crippa Valeria
    • Cristofani Riccardo
    • Csizmadia Tamas
    • Cuadrado Antonio
    • Cui Bing
    • Cui Jun
    • Cui Yixian
    • Cui Yong
    • Culetto Emmanuel
    • Cumino Andrea
    • Cybulsky Andrey
    • Czaja Mark
    • Czuczwar Stanislaw
    • D’adamo Stefania
    • D’amelio Marcello
    • D’arcangelo Daniela
    • D’lugos Andrew
    • D’orazi Gabriella
    • da Silva James
    • Dafsari Hormos Salimi
    • Dagda Ruben
    • Dagdas Yasin
    • Daglia Maria
    • Dai Xiaoxia
    • Dai Yun
    • Dai Yuyuan
    • Dal Col Jessica
    • Dalhaimer Paul
    • Dalla Valle Luisa
    • Dallenga Tobias
    • Dalmasso Guillaume
    • Damme Markus
    • Dando Ilaria
    • Dantuma Nico
    • Darling April
    • Das Hiranmoy
    • Dasarathy Srinivasan
    • Dasari Santosh
    • Dash Srikanta
    • Daumke Oliver
    • Dauphinee Adrian
    • Davies Jeffrey
    • Dávila Valeria
    • Davis Roger
    • Davis Tanja
    • Dayalan Naidu Sharadha
    • de Amicis Francesca
    • de Bosscher Karolien
    • de Felice Francesca
    • de Franceschi Lucia
    • de Leonibus Chiara
    • de Mattos Barbosa Mayara
    • de Meyer Guido R.Y.
    • de Milito Angelo
    • de Nunzio Cosimo
    • de Palma Clara
    • de Santi Mauro
    • de Virgilio Claudio
    • de Zio Daniela
    • Debnath Jayanta
    • Debosch Brian
    • Decuypere Jean-Paul
    • Deehan Mark
    • Deflorian Gianluca
    • Degregori James
    • Dehay Benjamin
    • del Rio Gabriel
    • Delaney Joe
    • Delbridge Lea
    • Delorme-Axford Elizabeth
    • Delpino M. Victoria
    • Demarchi Francesca
    • Dembitz Vilma
    • Demers Nicholas
    • Deng Hongbin
    • Deng Zhiqiang
    • Dengjel Joern
    • Dent Paul
    • Denton Donna
    • Depamphilis Melvin
    • Der Channing
    • Deretic Vojo
    • Descoteaux Albert
    • Devis Laura
    • Devkota Sushil
    • Devuyst Olivier
    • Dewson Grant
    • Dharmasivam Mahendiran
    • Dhiman Rohan
    • Di Bernardo Diego
    • Di Cristina Manlio
    • Di Domenico Fabio
    • Di Fazio Pietro
    • Di Fonzo Alessio
    • Di Guardo Giovanni
    • Di Guglielmo Gianni
    • Di Leo Luca
    • Di Malta Chiara
    • Di Nardo Alessia
    • Di Rienzo Martina
    • Di Sano Federica
    • Diallinas George
    • Diao Jiajie
    • Diaz-Araya Guillermo
    • Díaz-Laviada Inés
    • Dickinson Jared
    • Diederich Marc
    • Dieudé Mélanie
    • Dikic Ivan
    • Ding Shiping
    • Ding Wen-Xing
    • Dini Luciana
    • Dinić Jelena
    • Dinic Miroslav
    • Dinkova-Kostova Albena
    • Dionne Marc
    • Distler Jörg H.W.
    • Diwan Abhinav
    • Dixon Ian M.C.
    • Djavaheri-Mergny Mojgan
    • Dobrinski Ina
    • Dobrovinskaya Oxana
    • Dobrowolski Radek
    • Dobson Renwick C.J.
    • Đokić Jelena
    • Dokmeci Emre Serap
    • Donadelli Massimo
    • Dong Bo
    • Dong Xiaonan
    • Dong Zhiwu
    • 2nd Dorn Gerald
    • Dotsch Volker
    • Dou Huan
    • Dou Juan
    • Dowaidar Moataz
    • Dridi Sami
    • Drucker Liat
    • Du Ailian
    • Du Caigan
    • Du Guangwei
    • Du Hai-Ning
    • Du Li-Lin
    • Du Toit André
    • Duan Shao-Bin
    • Duan Xiaoqiong
    • Duarte Sónia
    • Dubrovska Anna
    • Dunlop Elaine
    • Dupont Nicolas
    • Durán Raúl
    • Dwarakanath Bilikere
    • Dyshlovoy Sergey
    • Ebrahimi-Fakhari Darius
    • Eckhart Leopold
    • Edelstein Charles
    • Efferth Thomas
    • Eftekharpour Eftekhar
    • Eichinger Ludwig
    • Eid Nabil
    • Eisenberg Tobias
    • Eissa N. Tony
    • Eissa Sanaa
    • Ejarque Miriam
    • El Andaloussi Abdeljabar
    • El-Hage Nazira
    • El-Naggar Shahenda
    • Eleuteri Anna Maria
    • El-Shafey Eman
    • Elgendy Mohamed
    • Eliopoulos Aristides
    • Elizalde María
    • Elks Philip
    • Elsasser Hans-Peter
    • Elsherbiny Eslam
    • Emerling Brooke
    • Emre N.
    • Eng Christina
    • Engedal Nikolai
    • Engelbrecht Anna-Mart
    • Engelsen Agnete S.T.
    • Enserink Jorrit
    • Escalante Ricardo
    • Esclatine Audrey
    • Escobar-Henriques Mafalda
    • Eskelinen Eeva-Liisa
    • Espert Lucile
    • Eusebio Makandjou-Ola
    • Fabrias Gemma
    • Fabrizi Cinzia
    • Facchiano Antonio
    • Facchiano Francesco
    • Fadeel Bengt
    • Fader Claudio
    • Faesen Alex
    • Fairlie W. Douglas
    • Falcó Alberto
    • Falkenburger Bjorn
    • Fan Daping
    • Fan Jie
    • Fan Yanbo
    • Fang Evandro
    • Fang Yanshan
    • Fang Yognqi
    • Fanto Manolis
    • Farfel-Becker Tamar
    • Faure Mathias
    • Fazeli Gholamreza
    • Fedele Anthony
    • Feldman Arthur
    • Feng Du
    • Feng Jiachun
    • Feng Lifeng
    • Feng Yibin
    • Feng Yuchen
    • Feng Wei
    • Fenz Araujo Thais
    • Ferguson Thomas
    • Fernández Álvaro
    • Fernandez-Checa Jose
    • Fernández-Veledo Sonia
    • Fernie Alisdair
    • Ferrante Anthony
    • Ferraresi Alessandra
    • Ferrari Merari
    • Ferreira Julio C.B.
    • Ferro-Novick Susan
    • Figueras Antonio
    • Filadi Riccardo
    • Filigheddu Nicoletta
    • Filippi-Chiela Eduardo
    • Filomeni Giuseppe
    • Fimia Gian Maria
    • Fineschi Vittorio
    • Finetti Francesca
    • Finkbeiner Steven
    • Fisher Edward
    • Fisher Paul
    • Flamigni Flavio
    • Fliesler Steven
    • Flo Trude
    • Florance Ida
    • Florey Oliver
    • Florio Tullio
    • Fodor Erika
    • Follo Carlo
    • Fon Edward
    • Forlino Antonella
    • Fornai Francesco
    • Fortini Paola
    • Fracassi Anna
    • Fraldi Alessandro
    • Franco Brunella
    • Franco Rodrigo
    • Franconi Flavia
    • Frankel Lisa
    • Friedman Scott
    • Fröhlich Leopold
    • Frühbeck Gema
    • Fuentes Jose
    • Fujiki Yukio
    • Fujita Naonobu
    • Fujiwara Yuuki
    • Fukuda Mitsunori
    • Fulda Simone
    • Furic Luc
    • Furuya Norihiko
    • Fusco Carmela
    • Gack Michaela
    • Gaffke Lidia
    • Galadari Sehamuddin
    • Galasso Alessia
    • Galindo Maria
    • Gallolu Kankanamalage Sachith
    • Galluzzi Lorenzo
    • Galy Vincent
    • Gammoh Noor
    • Gan Boyi
    • Ganley Ian
    • Gao Feng
    • Gao Hui
    • Gao Minghui
    • Gao Ping
    • Gao Shou-Jiang
    • Gao Wentao
    • Gao Xiaobo
    • Garcera Ana
    • Garcia Maria Noé
    • Garcia Verónica
    • García-del Portillo Francisco
    • Garcia-Escudero Vega
    • Garcia-Garcia Aracely
    • Garcia-Macia Marina
    • García-Moreno Diana
    • Garcia-Ruiz Carmen
    • García-Sanz Patricia
    • Garg Abhishek
    • Gargini Ricardo
    • Garofalo Tina
    • Garry Robert
    • Gassen Nils
    • Gatica Damian
    • Ge Liang
    • Ge Wanzhong
    • Geiss-Friedlander Ruth
    • Gelfi Cecilia
    • Genschik Pascal
    • Gentle Ian
    • Gerbino Valeria
    • Gerhardt Christoph
    • Germain Kyla
    • Germain Marc
    • Gewirtz David
    • Ghasemipour Afshar Elham
    • Ghavami Saeid
    • Ghigo Alessandra
    • Ghosh Manosij
    • Giamas Georgios
    • Giampietri Claudia
    • Giatromanolaki Alexandra
    • Gibson Gary
    • Gibson Spencer
    • Ginet Vanessa
    • Giniger Edward
    • Giorgi Carlotta
    • Girao Henrique
    • Girardin Stephen
    • Giridharan Mridhula
    • Giuliano Sandy
    • Giulivi Cecilia
    • Giuriato Sylvie
    • Giustiniani Julien
    • Gluschko Alexander
    • Goder Veit
    • Goginashvili Alexander
    • Golab Jakub
    • Goldstone David
    • Golebiewska Anna
    • Gomes Luciana
    • Gomez Rodrigo
    • Gómez-Sánchez Rubén
    • Gomez-Puerto Maria Catalina
    • Gomez-Sintes Raquel
    • Gong Qingqiu
    • Goni Felix
    • González-Gallego Javier
    • Gonzalez-Hernandez Tomas
    • Gonzalez-Polo Rosa
    • Gonzalez-Reyes Jose
    • González-Rodríguez Patricia
    • Goping Ing Swie
    • Gorbatyuk Marina
    • Gorbunov Nikolai
    • Görgülü Kivanç
    • Gorojod Roxana
    • Gorski Sharon
    • Goruppi Sandro
    • Gotor Cecilia
    • Gottlieb Roberta
    • Gozes Illana
    • Gozuacik Devrim
    • Graef Martin
    • Gräler Markus
    • Granatiero Veronica
    • Grasso Daniel
    • Gray Joshua
    • Green Douglas
    • Greenhough Alexander
    • Gregory Stephen
    • Griffin Edward
    • Grinstaff Mark
    • Gros Frederic
    • Grose Charles
    • Gross Angelina
    • Gruber Florian
    • Grumati Paolo
    • Grune Tilman
    • Gu Xueyan
    • Guan Jun-Lin
    • Guardia Carlos
    • Guda Kishore
    • Guerra Flora
    • Guerri Consuelo
    • Guha Prasun
    • Guillén Carlos
    • Gujar Shashi
    • Gukovskaya Anna
    • Gukovsky Ilya
    • Gunst Jan
    • Günther Andreas
    • Guntur Anyonya
    • Guo Chuanyong
    • Guo Chun
    • Guo Hongqing
    • Guo Lian-Wang
    • Guo Ming
    • Gupta Pawan
    • Gupta Shashi Kumar
    • Gupta Swapnil
    • Gupta Veer Bala
    • Gupta Vivek
    • Gustafsson Asa
    • Gutterman David
    • H.B. Ranjitha
    • Haapasalo Annakaisa
    • Haber James
    • Hać Aleksandra
    • Hadano Shinji
    • Hafrén Anders
    • Haidar Mansour
    • Hall Belinda
    • Halldén Gunnel
    • Hamacher-Brady Anne
    • Hamann Andrea
    • Hamasaki Maho
    • Han Weidong
    • Hansen Malene
    • Hanson Phyllis I. 
    • Hao Zijian
    • Harada Masaru
    • Harhaji-Trajkovic Ljubica
    • Hariharan Nirmala
    • Haroon Nigil
    • Harris James
    • Hasegawa Takafumi
    • Hasima Nagoor Noor
    • Haspel Jeffrey
    • Haucke Volker
    • Hawkins Wayne
    • Hay Bruce
    • Haynes Cole
    • Hayrabedyan Soren
    • Hays Thomas
    • He Congcong
    • He Qin
    • He Rong-Rong
    • He You-Wen
    • He Yu-Ying
    • Heakal Yasser
    • Heberle Alexander
    • Hejtmancik J. Fielding
    • Helgason Gudmundur Vignir 
    • Henkel Vanessa
    • Herb Marc
    • Hergovich Alexander
    • Herman-Antosiewicz Anna
    • Hernández Agustín
    • Hernandez Carlos
    • Hernandez-Diaz Sergio
    • Hernandez-Gea Virginia
    • Herpin Amaury
    • Herreros Judit
    • Hervás Javier
    • Hesselson Daniel
    • Hetz Claudio
    • Heussler Volker
    • Higuchi Yujiro
    • Hilfiker Sabine
    • Hill Joseph
    • Hlavacek William
    • Ho Emmanuel
    • Ho Idy H.T.
    • Ho Philip Wing-Lok
    • Ho Shu-Leong
    • Ho Wan Yun
    • Hobbs G. Aaron
    • Hochstrasser Mark
    • Hoet Peter H.M.
    • Hofius Daniel
    • Hofman Paul
    • Höhn Annika
    • Holmberg Carina
    • Hombrebueno Jose
    • Yi-Ren Hong Chang-Won Hong
    • Hooper Lora
    • Hoppe Thorsten
    • Horos Rastislav
    • Hoshida Yujin
    • Hsin I-Lun
    • Hsu Hsin-Yun
    • Hu Bing
    • Hu Dong
    • Hu Li-Fang
    • Hu Ming Chang
    • Hu Ronggui
    • Hu Wei
    • Hu Yu-Chen
    • Hu Zhuo-Wei
    • Hua Fang
    • Hua Jinlian
    • Hua Yingqi
    • Huan Chongmin
    • Huang Canhua
    • Huang Chuanshu
    • Huang Chuanxin
    • Huang Chunling
    • Huang Haishan
    • Huang Kun
    • Huang Michael L.H.
    • Huang Rui
    • Huang Shan
    • Huang Tianzhi
    • Huang Xing
    • Huang Yuxiang Jack
    • Huber Tobias
    • Hubert Virginie
    • Hubner Christian
    • Hughes Stephanie
    • Hughes William
    • Humbert Magali
    • Hummer Gerhard
    • Hurley James
    • Hussain Sabah
    • Hussain Salik
    • Hussey Patrick
    • Hutabarat Martina
    • Hwang Hui-Yun
    • Hwang Seungmin
    • Ieni Antonio
    • Ikeda Fumiyo
    • Imagawa Yusuke
    • Imai Yuzuru
    • Imbriano Carol
    • Imoto Masaya
    • Inman Denise
    • Inoki Ken
    • Iovanna Juan
    • Iozzo Renato
    • Ippolito Giuseppe
    • Irazoqui Javier
    • Iribarren Pablo
    • Ishaq Mohd
    • Ishikawa Makoto
    • Ishimwe Nestor
    • Isidoro Ciro
    • Ismail Nahed
    • Issazadeh-Navikas Shohreh
    • Itakura Eisuke
    • Ito Daisuke
    • Ivankovic Davor
    • Ivanova Saška
    • Iyer Anand Krishnan V.
    • Izquierdo José
    • Izumi Masanori
    • Jäättelä Marja
    • Jabir Majid Sakhi
    • Jackson William
    • Jacobo-Herrera Nadia
    • Jacomin Anne-Claire
    • Jacquin Elise
    • Jadiya Pooja
    • Jaeschke Hartmut
    • Jagannath Chinnaswamy
    • Jakobi Arjen
    • Jakobsson Johan
    • Janji Bassam
    • Jansen-Dürr Pidder
    • Jansson Patric
    • Jantsch Jonathan
    • Januszewski Sławomir
    • Jassey Alagie
    • Jean Steve
    • Jeltsch-David Hélène
    • Jendelova Pavla
    • Jenny Andreas
    • Jensen Thomas
    • Jessen Niels
    • Jewell Jenna
    • Ji Jing
    • Jia Lijun
    • Jia Rui
    • Jiang Liwen
    • Jiang Qing
    • Jiang Richeng
    • Jiang Teng
    • Jiang Xuejun
    • Jiang Yu
    • Jimenez-Sanchez Maria
    • Jin Eun-Jung
    • Jin Fengyan
    • Jin Hongchuan
    • Jin Li
    • Jin Luqi
    • Jin Meiyan
    • Jin Si
    • Jo Eun-Kyeong
    • Joffre Carine
    • Johansen Terje
    • Johnson Gail V.W.
    • Johnston Simon
    • Jokitalo Eija
    • Jolly Mohit Kumar
    • Joosten Leo A.B.
    • Jordan Joaquin
    • Joseph Bertrand
    • Ju Dianwen
    • Ju Jeong-Sun
    • Ju Jingfang
    • Juárez Esmeralda
    • Judith Delphine
    • Juhász Gábor
    • Jun Youngsoo
    • Jung Chang Hwa
    • Jung Sung-Chul
    • Jung Yong Keun
    • Jungbluth Heinz
    • Jungverdorben Johannes
    • Just Steffen
    • Kaarniranta Kai
    • Kaasik Allen
    • Kabuta Tomohiro
    • Kaganovich Daniel
    • Kahana Alon
    • Kain Renate
    • Kajimura Shinjo
    • Kalamvoki Maria
    • Kalia Manjula
    • Kalinowski Danuta
    • Kaludercic Nina
    • Kalvari Ioanna
    • Kaminska Joanna
    • Kaminskyy Vitaliy
    • Kanamori Hiromitsu
    • Kanasaki Keizo
    • Kang Chanhee
    • Kang Rui
    • Kang Sang Sun
    • Kaniyappan Senthilvelrajan
    • Kanki Tomotake
    • Kanneganti Thirumala-Devi
    • Kanthasamy Anumantha
    • Kanthasamy Arthi
    • Kantorow Marc
    • Kapuy Orsolya
    • Karamouzis Michalis
    • Karim Md. Razaul
    • Karmakar Parimal
    • Katare Rajesh
    • Kato Masaru
    • Kaufmann Stefan H.E.
    • Kauppinen Anu
    • Kaushal Gur
    • Kaushik Susmita
    • Kawasaki Kiyoshi
    • Kazan Kemal
    • Ke Po-Yuan
    • Keating Damien
    • Keber Ursula
    • Kehrl John
    • Keller Kate
    • Keller Christian
    • Kemper Jongsook Kim
    • Kenific Candia
    • Kepp Oliver
    • Kermorgant Stephanie
    • Kern Andreas
    • Ketteler Robin
    • Keulers Tom
    • Khalfin Boris
    • Khalil Hany
    • Khambu Bilon
    • Khan Shahid
    • Khandelwal Vinoth Kumar Megraj
    • Khandia Rekha
    • Kho Widuri
    • Khobrekar Noopur
    • Khuansuwan Sataree
    • Khundadze Mukhran
    • Killackey Samuel
    • Kim Dasol
    • Kim Deok Ryong
    • Kim Do-Hyung
    • Kim Dong-Eun
    • Kim Eun Young
    • Kim Eun-Kyoung
    • Kim Hak-Rim
    • Kim Hee-Sik
    • Kim Hyung-Ryong
    • Kim Jeong Hun
    • Kim Jin Kyung
    • Kim Jin-Hoi
    • Kim Joungmok
    • Kim Ju Hwan
    • Kim Keun Il
    • Kim Peter
    • Kim Seong-Jun
    • Kimball Scot
    • Kimchi Adi
    • Kimmelman Alec
    • Kimura Tomonori
    • King Matthew
    • Kinghorn Kerri
    • Kinsey Conan
    • Kirkin Vladimir
    • Kirshenbaum Lorrie
    • Kiselev Sergey
    • Kishi Shuji
    • Kitamoto Katsuhiko
    • Kitaoka Yasushi
    • Kitazato Kaio
    • Kitsis Richard
    • Kittler Josef
    • Kjaerulff Ole
    • Klein Peter
    • Klopstock Thomas
    • Klucken Jochen
    • Knævelsrud Helene
    • Knorr Roland
    • Ko Ben C.B.
    • Ko Fred
    • Ko Jiunn-Liang
    • Kobayashi Hotaka
    • Kobayashi Satoru
    • Koch Ina
    • Koch Jan
    • Koenig Ulrich
    • Kögel Donat
    • Koh Young Ho
    • Koike Masato
    • Kohlwein Sepp
    • Kocaturk Nur
    • Komatsu Masaaki
    • König Jeannette
    • Kono Toru
    • Kopp Benjamin
    • Korcsmaros Tamas
    • Korkmaz Gözde
    • Korolchuk Viktor
    • Korsnes Mónica Suárez
    • Koskela Ali
    • Kota Janaiah
    • Kotake Yaichiro
    • Kotler Monica
    • Kou Yanjun
    • Koukourakis Michael
    • Koustas Evangelos
    • Kovacs Attila
    • Kovács Tibor
    • Koya Daisuke
    • Kozako Tomohiro
    • Kraft Claudine
    • Krainc Dimitri
    • Krämer Helmut
    • Krasnodembskaya Anna
    • Kretz-Remy Carole
    • Kroemer Guido
    • Ktistakis Nicholas
    • Kuchitsu Kazuyuki
    • Kuenen Sabine
    • Kuerschner Lars
    • Kukar Thomas
    • Kumar Ajay
    • Kumar Ashok
    • Kumar Deepak
    • Kumar Dhiraj
    • Kumar Sharad
    • Kume Shinji
    • Kumsta Caroline
    • Kundu Chanakya
    • Kundu Mondira
    • Kunnumakkara Ajaikumar
    • Kurgan Lukasz
    • Kutateladze Tatiana
    • Kutlu Ozlem
    • Kwak Seongae
    • Kwon Ho Jeong
    • Kwon Taeg Kyu
    • Kwon Yong Tae
    • Kyrmizi Irene
    • La Spada Albert
    • Labonté Patrick
    • Ladoire Sylvain
    • Laface Ilaria
    • Lafont Frank
    • Lagace Diane
    • Lahiri Vikramjit
    • Lai Zhibing
    • Laird Angela
    • Lakkaraju Aparna
    • Lamark Trond
    • Lan Sheng-Hui
    • Landajuela Ane
    • Lane Darius
    • Lane Jon
    • Lang Charles
    • Lange Carsten
    • Langel Ülo
    • Langer Rupert
    • Lapaquette Pierre
    • Laporte Jocelyn
    • Larusso Nicholas
    • Lastres-Becker Isabel
    • Lau Wilson Chun Yu
    • Laurie Gordon
    • Lavandero Sergio
    • Law Betty Yuen Kwan
    • Law Helen Ka-Wai
    • Layfield Rob
    • Le Weidong
    • Le Stunff Herve
    • Leary Alexandre
    • Lebrun Jean-Jacques
    • Leck Lionel Y.W.
    • Leduc-Gaudet Jean-Philippe
    • Lee Changwook
    • Lee Chung-Pei
    • Lee Da-Hye
    • Lee Edward
    • Lee Erinna
    • Lee Gyun Min
    • Lee He-Jin
    • Lee Heung Kyu
    • Lee Jae Man
    • Lee Jason
    • Lee Jin-A
    • Lee Joo-Yong
    • Lee Jun Hee
    • Lee Michael
    • Lee Min Goo
    • Lee Min Jae
    • Lee Myung-Shik
    • Lee Sang Yoon
    • Lee Seung-Jae
    • Lee Stella
    • Lee Sung Bae
    • Lee Won Hee
    • Lee Ying-Ray
    • Lee Yong-Ho
    • Lee Youngil
    • Lefebvre Christophe
    • Legouis Renaud
    • Lei Yu
    • Lei Yuchen
    • Leikin Sergey
    • Leitinger Gerd
    • Lemus Leticia
    • Leng Shuilong
    • Lenoir Olivia
    • Lenz Guido
    • Lenz Heinz Josef
    • Lenzi Paola
    • León Yolanda
    • Leopoldino Andréia
    • Leschczyk Christoph
    • Leskelä Stina
    • Letellier Elisabeth
    • Leung Chi-Ting
    • Leung Po Sing
    • Leventhal Jeremy
    • Levine Beth
    • Lewis Patrick
    • Ley Klaus
    • Li Bin
    • Li Da-Qiang
    • Li Jianming
    • Li Jing
    • Li Jiong
    • Li Ke
    • Li Liwu
    • Li Mei
    • Li Min
    • Li Ming
    • Li Mingchuan
    • Li Pin-Lan
    • Li Ming-Qing
    • Li Qing
    • Li Sheng
    • Li Tiangang
    • Li Wei
    • Li Wenming
    • Li Xue
    • Li Yi-Ping
    • Li Yuan
    • Li Zhiqiang
    • Li Zhiyong
    • Li Zhiyuan
    • Lian Jiqin
    • Liang Chengyu
    • Liang Qiangrong
    • Liang Weicheng
    • Liang Yongheng
    • Liang Yongtian
    • Liao Guanghong
    • Liao Lujian
    • Liao Mingzhi
    • Liao Yung-Feng
    • Librizzi Mariangela
    • Lie Pearl
    • Lilly Mary
    • Lim Hyunjung
    • Lima Thania R.R.
    • Limana Federica
    • Lin Chao
    • Lin Chih-Wen
    • Lin Dar-Shong
    • Lin Fu-Cheng
    • Lin Jiandie
    • Lin Kurt
    • Lin Kwang-Huei
    • Lin Liang-Tzung
    • Lin Pei-Hui
    • Lin Qiong
    • Lin Shaofeng
    • Lin Su-Ju
    • Lin Wenyu
    • Lin Xueying
    • Lin Yao-Xin
    • Lin Yee-Shin
    • Linden Rafael
    • Lindner Paula
    • Ling Shuo-Chien
    • Lingor Paul
    • Linnemann Amelia
    • Liou Yih-Cherng
    • Lipinski Marta
    • Lipovšek Saška
    • Lira Vitor
    • Lisiak Natalia
    • Liton Paloma
    • Liu Chao
    • Liu Ching-Hsuan
    • Liu Chun-Feng
    • Liu Cui Hua
    • Liu Fang
    • Liu Hao
    • Liu Hsiao-Sheng
    • Liu Hua-Feng
    • Liu Huifang
    • Liu Jia
    • Liu Jing
    • Liu Julia
    • Liu Leyuan
    • Liu Longhua
    • Liu Meilian
    • Liu Qin
    • Liu Wei
    • Liu Wende
    • Liu Xiao-Hong
    • Liu Xiaodong
    • Liu Xingguo
    • Liu Xu
    • Liu Xuedong
    • Liu Yanfen
    • Liu Yang
    • Liu Yueyang
    • Liu Yule
    • Livingston J. Andrew
    • Lizard Gerard
    • Lizcano Jose
    • Ljubojevic-Holzer Senka
    • Lleonart Matilde
    • Llobet-Navàs David
    • Llorente Alicia
    • Lo Chih Hung
    • Lobato-Márquez Damián
    • Long Qi
    • Long Yun Chau
    • Loos Ben
    • Loos Julia
    • López Manuela
    • López-Doménech Guillermo
    • López-Guerrero José Antonio
    • López-Jiménez Ana
    • López-Pérez Óscar
    • López-Valero Israel
    • Lorenowicz Magdalena
    • Lorente Mar
    • Lorincz Peter
    • Lossi Laura
    • Lotersztajn Sophie
    • Lovat Penny
    • Lovell Jonathan
    • Lovy Alenka
    • Lőw Péter
    • Lu Guang
    • Lu Haocheng
    • Lu Jia-Hong
    • Lu Jin-Jian
    • Lu Mengji
    • Lu Shuyan
    • Luciani Alessandro
    • Lucocq John
    • Ludovico Paula
    • Luftig Micah
    • Luhr Morten
    • Luis-Ravelo Diego
    • Lum Julian
    • Luna-Dulcey Liany
    • Lund Anders
    • Lund Viktor
    • Lünemann Jan
    • Lüningschrör Patrick
    • Luo Honglin
    • Luo Rongcan
    • Luo Shouqing
    • Luo Zhi
    • Luparello Claudio
    • Lüscher Bernhard
    • Luu Luan
    • Lyakhovich Alex
    • Lyamzaev Konstantin
    • Lystad Alf Håkon
    • Lytvynchuk Lyubomyr
    • Ma Alvin
    • Ma Changle
    • Ma Mengxiao
    • Ma Ning-Fang
    • Ma Quan-Hong
    • Ma Xinliang
    • Ma Yueyun
    • Ma Zhenyi
    • Macdougald Ormond
    • Macian Fernando
    • Macintosh Gustavo
    • Mackeigan Jeffrey
    • Macleod Kay
    • Maday Sandra
    • Madeo Frank
    • Madesh Muniswamy
    • Madl Tobias
    • Madrigal-Matute Julio
    • Maeda Akiko
    • Maejima Yasuhiro
    • Magarinos Marta
    • Mahavadi Poornima
    • Maiani Emiliano
    • Maiese Kenneth
    • Maiti Panchanan
    • Maiuri Maria Chiara
    • Majello Barbara
    • Major Michael
    • Makareeva Elena
    • Malik Fayaz
    • Mallilankaraman Karthik
    • Malorni Walter
    • Maloyan Alina
    • Mammadova Najiba
    • Man Gene Chi Wai
    • Manai Federico
    • Mancias Joseph
    • Mandelkow Eva-Maria
    • Mandell Michael
    • Manfredi Angelo
    • Manjili Masoud
    • Manjithaya Ravi
    • Manque Patricio
    • Manshian Bella
    • Manzano Raquel
    • Manzoni Claudia
    • Mao Kai
    • Marchese Cinzia
    • Marchetti Sandrine
    • Marconi Anna Maria
    • Marcucci Fabrizio
    • Mardente Stefania
    • Mareninova Olga
    • Margeta Marta
    • Mari Muriel
    • Marinelli Sara
    • Marinelli Oliviero
    • Mariño Guillermo
    • Mariotto Sofia
    • Marshall Richard
    • Marten Mark
    • Martens Sascha
    • Martin Alexandre P.J.
    • Martin Katie
    • Martin Sara
    • Martin Shaun
    • Martín-Segura Adrián
    • Martín-Acebes Miguel
    • Martin-Burriel Inmaculada
    • Martin-Rincon Marcos
    • Martin-Sanz Paloma
    • Martina José
    • Martinet Wim
    • Martinez Aitor
    • Martinez Ana
    • Martinez Jennifer
    • Martinez Velazquez Moises
    • Martinez-Lopez Nuria
    • Martinez-Vicente Marta
    • Martins Daniel
    • Martins Joilson
    • Martins Waleska
    • Martins-Marques Tania
    • Marzetti Emanuele
    • Masaldan Shashank
    • Masclaux-Daubresse Celine
    • Mashek Douglas
    • Massa Valentina
    • Massieu Lourdes
    • Masson Glenn
    • Masuelli Laura
    • Masyuk Anatoliy
    • Masyuk Tetyana
    • Matarrese Paola
    • Matheu Ander
    • Matoba Satoaki
    • Matsuzaki Sachiko
    • Mattar Pamela
    • Matte Alessandro
    • Mattoscio Domenico
    • Mauriz José
    • Mauthe Mario
    • Mauvezin Caroline
    • Maverakis Emanual
    • Maycotte Paola
    • Mayer Johanna
    • Mazzoccoli Gianluigi
    • Mazzoni Cristina
    • Mazzulli Joseph
    • Mccarty Nami
    • Mcdonald Christine
    • Mcgill Mitchell
    • Mckenna Sharon
    • Mclaughlin Bethann
    • Mcloughlin Fionn
    • Mcniven Mark
    • Mcwilliams Thomas
    • Mechta-Grigoriou Fatima
    • Medeiros Tania Catarina
    • Medina Diego
    • Megeney Lynn
    • Megyeri Klara
    • Mehrpour Maryam
    • Mehta Jawahar
    • Meijer Alfred
    • Meijer Annemarie
    • Mejlvang Jakob
    • Meléndez Alicia
    • Melk Annette
    • Memisoglu Gonen
    • Mendes Alexandrina
    • Meng Delong
    • Meng Fei
    • Meng Tian
    • Menna-Barreto Rubem
    • Menon Manoj
    • Mercer Carol
    • Mercier Anne
    • Mergny Jean-Louis
    • Merighi Adalberto
    • Merkley Seth
    • Merla Giuseppe
    • Meske Volker
    • Mestre Ana Cecilia
    • Metur Shree Padma
    • Meyer Christian
    • Meyer Hemmo
    • Mi Wenyi
    • Mialet-Perez Jeanne
    • Miao Junying
    • Micale Lucia
    • Miki Yasuo
    • Milan Enrico
    • Milczarek Małgorzata
    • Miller Dana
    • Miller Samuel
    • Miller Silke
    • Millward Steven
    • Milosevic Ira
    • Minina Elena
    • Mirzaei Hamed
    • Mirzaei Hamid Reza
    • Mirzaei Mehdi
    • Mishra Amit
    • Mishra Nandita
    • Mishra Paras Kumar
    • Misirkic Marjanovic Maja
    • Misasi Roberta
    • Misra Amit
    • Misso Gabriella
    • Mitchell Claire
    • Mitou Geraldine
    • Miura Tetsuji
    • Miyamoto Shigeki
    • Miyazaki Makoto
    • Miyazaki Mitsunori
    • Miyazaki Taiga
    • Miyazawa Keisuke
    • Mizushima Noboru
    • Mogensen Trine
    • Mograbi Baharia
    • Mohammadinejad Reza
    • Mohamud Yasir
    • Mohanty Abhishek
    • Mohapatra Sipra
    • Möhlmann Torsten
    • Mohmmed Asif
    • Moles Anna
    • Moley Kelle
    • Molinari Maurizio
    • Mollace Vincenzo
    • Møller Andreas Buch
    • Mollereau Bertrand
    • Mollinedo Faustino
    • Montagna Costanza
    • Monteiro Mervyn
    • Montella Andrea
    • Montes L. Ruth
    • Montico Barbara
    • Mony Vinod
    • Monzio Compagnoni Giacomo
    • Moore Michael
    • Moosavi Mohammad
    • Mora Ana
    • Mora Marina
    • Morales-Alamo David
    • Moratalla Rosario
    • Moreira Paula
    • Morelli Elena
    • Moreno Sandra
    • Moreno-Blas Daniel
    • Moresi Viviana
    • Morga Benjamin
    • Morgan Alwena
    • Morin Fabrice
    • Morishita Hideaki
    • Moritz Orson
    • Moriyama Mariko
    • Moriyasu Yuji
    • Morleo Manuela
    • Morselli Eugenia
    • Moruno-Manchon Jose
    • Moscat Jorge
    • Mostowy Serge
    • Motori Elisa
    • Moura Andrea Felinto
    • Moustaid-Moussa Naima
    • Mrakovcic Maria
    • Muciño-Hernández Gabriel
    • Mukherjee Anupam
    • Mukhopadhyay Subhadip
    • Mulcahy Levy Jean
    • Mulero Victoriano
    • Muller Sylviane
    • Münch Christian
    • Munjal Ashok
    • Munoz-Canoves Pura
    • Muñoz-Galdeano Teresa
    • Münz Christian
    • Murakawa Tomokazu
    • Muratori Claudia
    • Murphy Brona
    • Murphy J. Patrick
    • Murthy Aditya
    • Myöhänen Timo
    • Mysorekar Indira
    • Mytych Jennifer
    • Nabavi Seyed Mohammad
    • Nabissi Massimo
    • Nagy Péter
    • Nah Jihoon
    • Nahimana Aimable
    • Nakagawa Ichiro
    • Nakamura Ken
    • Nakatogawa Hitoshi
    • Nandi Shyam
    • Nanjundan Meera
    • Nanni Monica
    • Napolitano Gennaro
    • Nardacci Roberta
    • Narita Masashi
    • Nassif Melissa
    • Nathan Ilana
    • Natsumeda Manabu
    • Naude Ryno
    • Naumann Christin
    • Naveiras Olaia
    • Navid Fatemeh
    • Nawrocki Steffan
    • Nazarko Taras
    • Nazio Francesca
    • Negoita Florentina
    • Neill Thomas
    • Neisch Amanda
    • Neri Luca
    • Netea Mihai
    • Neubert Patrick
    • Neufeld Thomas
    • Neumann Dietbert
    • Neutzner Albert
    • Newton Phillip
    • Ney Paul
    • Nezis Ioannis
    • Ng Charlene C.W.
    • Ng Tzi Bun
    • Nguyen Hang
    • Nguyen Long
    • Ni Hong-Min
    • Ní Cheallaigh Clíona
    • Ni Zhenhong
    • Nicolao M. Celeste
    • Nicoli Francesco
    • Nieto-Diaz Manuel
    • Nilsson Per
    • Ning Shunbin
    • Niranjan Rituraj
    • Nishimune Hiroshi
    • Niso-Santano Mireia
    • Nixon Ralph
    • Nobili Annalisa
    • Nobrega Clevio
    • Noda Takeshi
    • Nogueira-Recalde Uxía
    • Nolan Trevor
    • Nombela Ivan
    • Novak Ivana
    • Novoa Beatriz
    • Nozawa Takashi
    • Nukina Nobuyuki
    • Nussbaum-Krammer Carmen
    • Nylandsted Jesper
    • O’donovan Tracey
    • O’leary Seónadh
    • O’rourke Eyleen
    • O’sullivan Mary
    • O’sullivan Timothy
    • Oddo Salvatore
    • Oehme Ina
    • Ogawa Michinaga
    • Ogier-Denis Eric
    • Ogmundsdottir Margret
    • Ogretmen Besim
    • Oh Goo Taeg
    • Oh Seon-Hee
    • Oh Young
    • Ohama Takashi
    • Ohashi Yohei
    • Ohmuraya Masaki
    • Oikonomou Vasileios
    • Ojha Rani
    • Okamoto Koji
    • Okazawa Hitoshi
    • Oku Masahide
    • Oliván Sara
    • Oliveira Jorge
    • Ollmann Michael
    • Olzmann James
    • Omari Shakib
    • Omary M. Bishr
    • Önal Gizem
    • Ondrej Martin
    • Ong Sang-Bing
    • Ong Sang-Ging
    • Onnis Anna
    • Orellana Juan
    • Orellana-Muñoz Sara
    • Ortega-Villaizan Maria del Mar
    • Ortiz-Gonzalez Xilma
    • Ortona Elena
    • Osiewacz Heinz
    • Osman Abdel-Hamid
    • Osta Rosario
    • Otegui Marisa
    • Otsu Kinya
    • Ott Christiane
    • Ottobrini Luisa
    • Ou Jing-Hsiung James
    • Outeiro Tiago
    • Oynebraten Inger
    • Ozturk Melek
    • Pagès Gilles
    • Pahari Susanta
    • Pajares Marta
    • Pajvani Utpal
    • Pal Rituraj
    • Paladino Simona
    • Pallet Nicolas
    • Palmieri Michela
    • Palmisano Giuseppe
    • Palumbo Camilla
    • Pampaloni Francesco
    • Pan Lifeng
    • Pan Qingjun
    • Pan Wenliang
    • Pan Xin
    • Panasyuk Ganna
    • Pandey Rahul
    • Pandey Udai
    • Pandya Vrajesh
    • Paneni Francesco
    • Pang Shirley
    • Panzarini Elisa
    • Papademetrio Daniela
    • Papaleo Elena
    • Papinski Daniel
    • Papp Diana
    • Park Eun Chan
    • Park Hwan Tae
    • Park Ji-Man
    • Park Jong-In
    • Park Joon Tae
    • Park Junsoo
    • Park Sang Chul
    • Park Sang-Youel
    • Parola Abraham
    • Parys Jan
    • Pasquier Adrien
    • Pasquier Benoit
    • Passos João
    • Pastore Nunzia
    • Patel Hemal
    • Patschan Daniel
    • Pattingre Sophie
    • Pedraza-Alva Gustavo
    • Pedraza-Chaverri Jose
    • Pedrozo Zully
    • Pei Gang
    • Pei Jianming
    • Peled-Zehavi Hadas
    • Pellegrini Joaquín
    • Pelletier Joffrey
    • Peñalva Miguel
    • Peng Di
    • Peng Ying
    • Penna Fabio
    • Pennuto Maria
    • Pentimalli Francesca
    • Pereira Cláudia Mf
    • Pereira Gustavo J.S.
    • Pereira Lilian
    • Pereira de Almeida Luis
    • Perera Nirma
    • Pérez-Lara Ángel
    • Perez-Oliva Ana
    • Pérez-Pérez María Esther
    • Periyasamy Palsamy
    • Perl Andras
    • Perrotta Cristiana
    • Perrotta Ida
    • Pestell Richard
    • Petersen Morten
    • Petrache Irina
    • Petrovski Goran
    • Pfirrmann Thorsten
    • Pfister Astrid
    • Philips Jennifer
    • Pi Huifeng
    • Picca Anna
    • Pickrell Alicia
    • Picot Sandy
    • Pierantoni Giovanna
    • Pierdominici Marina
    • Pierre Philippe
    • Pierrefite-Carle Valérie
    • Pierzynowska Karolina
    • Pietrocola Federico
    • Pietruczuk Miroslawa
    • Pignata Claudio
    • Pimentel-Muiños Felipe
    • Pinar Mario
    • Pinheiro Roberta
    • Pinkas-Kramarski Ronit
    • Pinton Paolo
    • Pircs Karolina
    • Piya Sujan
    • Pizzo Paola
    • Plantinga Theo
    • Platta Harald
    • Plaza-Zabala Ainhoa
    • Plomann Markus
    • Plotnikov Egor
    • Plun-Favreau Helene
    • Pluta Ryszard
    • Pocock Roger
    • Pöggeler Stefanie
    • Pohl Christian
    • Poirot Marc
    • Poletti Angelo
    • Ponpuak Marisa
    • Popelka Hana
    • Popova Blagovesta
    • Porta Helena
    • Porte Alcon Soledad
    • Portilla-Fernandez Eliana
    • Post Martin
    • Potts Malia
    • Poulton Joanna
    • Powers Ted
    • Prahlad Veena
    • K. Prajsnar Tomasz
    • Praticò Domenico
    • Prencipe Rosaria
    • Priault Muriel
    • Proikas-Cezanne Tassula
    • J. Promponas Vasilis
    • G. Proud Christopher
    • Puertollano Rosa
    • Puglielli Luigi
    • Pulinilkunnil Thomas
    • Puri Deepika
    • Puri Rajat
    • Puyal Julien
    • Qi Xiaopeng
    • Qi Yongmei
    • Qian Wenbin
    • Qiang Lei
    • Qiu Yu
    • Quadrilatero Joe
    • Quarleri Jorge
    • Raben Nina
    • Rabinowich Hannah
    • Ragona Debora
    • J. Ragusa Michael
    • Rahimi Nader
    • Rahmati Marveh
    • Raia Valeria
    • Raimundo Nuno
    • Rajasekaran Namakkal-Soorappan
    • Ramachandra Rao Sriganesh
    • Rami Abdelhaq
    • Ramírez-Pardo Ignacio
    • B. Ramsden David
    • Randow Felix
    • N. Rangarajan Pundi
    • Ranieri Danilo
    • Rao Hai
    • Rao Lang
    • Rao Rekha
    • Rathore Sumit
    • Arjuna Ratnayaka J.
    • A. Ratovitski Edward
    • Ravanan Palaniyandi
    • Ravegnini Gloria
    • K. Ray Swapan
    • Razani Babak
    • Rebecca Vito
    • Reggiori Fulvio
    • Régnier-Vigouroux Anne
    • S. Reichert Andreas
    • Reigada David
    • H. Reiling Jan
    • Rein Theo
    • Reipert Siegfried
    • Sultana Rekha Rokeya
    • Ren Hongmei
    • Ren Jun
    • Ren Weichao
    • Renault Tristan
    • Renga Giorgia
    • Reue Karen
    • Rewitz Kim
    • Ribeiro de Andrade Ramos Bruna
    • Amer Riazuddin S.
    • M. Ribeiro-Rodrigues Teresa
    • Ricci Jean-Ehrland
    • Ricci Romeo
    • Riccio Victoria
    • R. Richardson Des
    • Rikihisa Yasuko
    • V. Risbud Makarand
    • M. Risueño Ruth
    • Ritis Konstantinos
    • Rizza Salvatore
    • Rizzuto Rosario
    • C. Roberts Helen
    • D. Roberts Luke
    • J. Robinson Katherine
    • Carmela Roccheri Maria
    • Rocchi Stephane
    • G. Rodney George
    • Rodrigues Tiago
    • Ramon Rodrigues Silva Vagner
    • Rodriguez Amaia
    • Rodriguez-Barrueco Ruth
    • Rodriguez-Henche Nieves
    • Rodriguez-Rocha Humberto
    • Roelofs Jeroen
    • S. Rogers Robert
    • V. Rogov Vladimir
    • I. Rojo Ana
    • Rolka Krzysztof
    • Romanello Vanina
    • Romani Luigina
    • Romano Alessandra
    • S. Romano Patricia
    • Romeo-Guitart David
    • C. Romero Luis
    • Romero Montserrat
    • C. Roney Joseph
    • Rongo Christopher
    • Roperto Sante
    • T. Rosenfeldt Mathias
    • Rosenstiel Philip
    • G. Rosenwald Anne
    • A. Roth Kevin
    • Roth Lynn
    • Roth Steven
    • M.A. Rouschop Kasper
    • D. Roussel Benoit
    • Roux Sophie
    • Rovere-Querini Patrizia
    • Roy Ajit
    • Rozieres Aurore
    • Ruano Diego
    • C. Rubinsztein David
    • P. Rubtsova Maria
    • Ruckdeschel Klaus
    • Ruckenstuhl Christoph
    • Rudolf Emil
    • Rudolf Rüdiger
    • Ruggieri Alessandra
    • Ashok Ruparelia Avnika
    • Rusmini Paola
    • R. Russell Ryan
    • Luigi Russo Gian
    • Russo Maria
    • Russo Rossella
    • O. Ryabaya Oxana
    • M. Ryan Kevin
    • Ryu Kwon-Yul
    • Sabater-Arcis Maria
    • Sachdev Ulka
    • Sacher Michael
    • Sachse Carsten
    • Sadhu Abhishek
    • Sadoshima Junichi
    • Safren Nathaniel
    • Saftig Paul
    • P. Sagona Antonia
    • Sahay Gaurav
    • Sahebkar Amirhossein
    • Sahin Mustafa
    • Sahin Ozgur
    • Sahni Sumit
    • Saito Nayuta
    • Saito Shigeru
    • Saito Tsunenori
    • Sakai Ryohei
    • Sakai Yasuyoshi
    • Sakamaki Jun-Ichi
    • Saksela Kalle
    • Salazar Gloria
    • Salazar-Degracia Anna
    • H. Salekdeh Ghasem
    • K. Saluja Ashok
    • Sampaio-Marques Belém
    • Cecilia Sanchez Maria
    • A. Sanchez-Alcazar Jose
    • Sanchez-Vera Victoria
    • Sancho-Shimizu Vanessa
    • Thomas Sanderson J.
    • Sandri Marco
    • Santaguida Stefano
    • Santambrogio Laura
    • M. Santana Magda
    • Santoni Giorgio
    • Sanz Alberto
    • Sanz Pascual
    • Saran Shweta
    • Sardiello Marco
    • J. Sargeant Timothy
    • Sarin Apurva
    • Sarkar Chinmoy
    • Sarkar Sovan
    • Sarrias Maria-Rosa
    • Sarkar Surajit
    • Tanu Sarmah Dipanka
    • Sarparanta Jaakko
    • Sathyanarayan Aishwarya
    • Sathyanarayanan Ranganayaki
    • Matthew Scaglione K.
    • Scatozza Francesca
    • Schaefer Liliana
    • T. Schafer Zachary
    • E. Schaible Ulrich
    • H.V. Schapira Anthony
    • Scharl Michael
    • M. Schatzl Hermann
    • H. Schein Catherine
    • Scheper Wiep
    • Scheuring David
    • Vittoria Schiaffino Maria
    • Schiappacassi Monica
    • Schindl Rainer
    • Schlattner Uwe
    • Schmidt Oliver
    • Schmitt Roland
    • D. Schmidt Stephen
    • Schmitz Ingo
    • Schmukler Eran
    • Schneider Anja
    • E. Schneider Bianca
    • Schober Romana
    • C. Schoijet Alejandra
    • B. Schott Micah
    • Schramm Michael
    • Schröder Bernd
    • Schuh Kai
    • Schüller Christoph
    • J. Schulze Ryan
    • Schürmanns Lea
    • C. Schwamborn Jens
    • Schwarten Melanie
    • Scialo Filippo
    • Sciarretta Sebastiano
    • J. Scott Melanie
    • W. Scotto Kathleen
    • Ivana Scovassi A.
    • Scrima Andrea
    • Scrivo Aurora
    • Sebastian David
    • Sebti Salwa
    • Sedej Simon
    • Segatori Laura
    • Segev Nava
    • O. Seglen Per
    • Seiliez Iban
    • Seki Ekihiro
    • B. Selleck Scott
    • W. Sellke Frank
    • T. Selsby Joshua
    • Sendtner Michael
    • Senturk Serif
    • Seranova Elena
    • Sergi Consolato
    • Serra-Moreno Ruth
    • Sesaki Hiromi
    • Settembre Carmine
    • Rao Gangi Setty Subba
    • Sgarbi Gianluca
    • Sha Ou
    • J. Shacka John
    • A. Shah Javeed
    • Shang Dantong
    • Shao Changshun
    • Shao Feng
    • Sharbati Soroush
    • M. Sharkey Lisa
    • Sharma Dipali
    • Sharm Gaurav
    • Sharma Kulbhushan
    • Sharma Pawan
    • Sharma Surendra
    • Shen Han-Ming
    • Shen Hongtao
    • Shen Jiangang
    • Shen Ming
    • Shen Weili
    • Shen Zheni
    • Sheng Rui
    • Sheng Zhi
    • Sheng Zu-Hang
    • Shi Jianjian
    • Shi Xiaobing
    • Shi Ying-Hong
    • Shiba-Fukushima Kahori
    • Shieh Jeng-Jer
    • Shimada Yohta
    • Shimizu Shigeomi
    • Shimozawa Makoto
    • Shintani Takahiro
    • J. Shoemaker Christopher
    • Shojaei Shahla
    • Shoji Ikuo
    • V. Shravage Bhupendra
    • Shridhar Viji
    • Shu Chih-Wen
    • Shu Hong-Bing
    • Shui Ke
    • K. Shukla Arvind
    • E. Shutt Timothy
    • Sica Valentina
    • Siddiqui Aleem
    • Sierra Amanda
    • Sierra-Torre Virginia
    • Signorelli Santiago
    • Sil Payel
    • J. de Andrade Silva Bruno
    • D. Silva Johnatas
    • Silva-Pavez Eduardo
    • Silvente-Poirot Sandrine
    • E. Simmonds Rachel
    • Katharina Simon Anna
    • Simon Hans-Uwe
    • Simons Matias
    • Singh Anurag
    • P. Singh Lalit
    • Singh Rajat
    • V. Singh Shivendra
    • K. Singh Shrawan
    • B. Singh Sudha
    • Singh Sunaina
    • Pal Singh Surinder
    • Sinha Debasish
    • Anthony Sinha Rohit
    • Sinha Sangita
    • Sirko Agnieszka
    • Sirohi Kapil
    • L. Sivridis Efthimios
    • Skendros Panagiotis
    • Skirycz Aleksandra
    • Slaninová Iva
    • S. Smaili Soraya
    • Smertenko Andrei
    • D. Smith Matthew
    • J. Soenen Stefaan
    • Jung Sohn Eun
    • P. M. Sok Sophia
    • Solaini Giancarlo
    • Soldati Thierry
    • A. Soleimanpour Scott
    • M. Soler Rosa
    • Solovchenko Alexei
    • A. Somarelli Jason
    • Sonawane Avinash
    • Song Fuyong
    • Kyu Song Hyun
    • Song Ju-Xian
    • Song Kunhua
    • Song Zhiyin
    • R. Soria Leandro
    • Sorice Maurizio
    • A. Soukas Alexander
    • Soukup Sandra-Fausia
    • Sousa Diana
    • Sousa Nadia
    • A. Spagnuolo Paul
    • A. Spector Stephen
    • M. Srinivas Bharath M.
    • St. Clair Daret
    • Stagni Venturina
    • Staiano Leopoldo
    • A. Stalnecker Clint
    • V. Stankov Metodi
    • B. Stathopulos Peter
    • Stefan Katja
    • Marcel Stefan Sven
    • Stefanis Leonidas
    • S. Steffan Joan
    • Steinkasserer Alexander
    • Stenmark Harald
    • Sterneckert Jared
    • Stevens Craig
    • Stoka Veronika
    • Storch Stephan
    • Stork Björn
    • Strappazzon Flavie
    • Marie Strohecker Anne
    • G. Stupack Dwayne
    • Su Huanxing
    • Su Ling-Yan
    • Su Longxiang
    • M. Suarez-Fontes Ana
    • S. Subauste Carlos
    • Subbian Selvakumar
    • V. Subirada Paula
    • Sudhandiran Ganapasam
    • M. Sue Carolyn
    • Sui Xinbing
    • Summers Corey
    • Sun Guangchao
    • Sun Jun
    • Sun Kang
    • Sun Meng-Xiang
    • Sun Qiming
    • Sun Yi
    • Sun Zhongjie
    • K.S. Sunahara Karen
    • Sundberg Eva
    • Susztak Katalin
    • Sutovsky Peter
    • Suzuki Hidekazu
    • Sweeney Gary
    • David Symons J.
    • Cho Wing Sze Stephen
    • J. Szewczyk Nathaniel
    • Tabęcka-Łonczynska Anna
    • Tabolacci Claudio
    • Tacke Frank
    • Taegtmeyer Heinrich
    • Tafani Marco
    • Tagaya Mitsuo
    • Tai Haoran
    • W. G. Tait Stephen
    • Takahashi Yoshinori
    • Takats Szabolcs
    • Talwar Priti
    • Tam Chit
    • Yau Tam Shing
    • Tampellini Davide
    • Tamura Atsushi
    • Teik Tan Chong
    • Tan Eng-King
    • Tan Ya-Qin
    • Tanaka Masaki
    • Tanaka Motomasa
    • Tang Daolin
    • Tang Jingfeng
    • Tang Tie-Shan
    • Tanida Isei
    • Tao Zhipeng
    • Taouis Mohammed
    • Tatenhorst Lars
    • Tavernarakis Nektarios
    • Taylor Allen
    • A. Taylor Gregory
    • M. Taylor Joan
    • Tchetina Elena
    • R. Tee Andrew
    • Tegeder Irmgard
    • Teis David
    • Teixeira Natercia
    • Teixeira-Clerc Fatima
    • A. Tekirdag Kumsal
    • Tencomnao Tewin
    • Tenreiro Sandra
    • V. Tepikin Alexei
    • S. Testillano Pilar
    • Tettamanti Gianluca
    • Tharaux Pierre-Louis
    • Thedieck Kathrin
    • A. Thekkinghat Arvind
    • Thellung Stefano
    • W. Thinwa Josephine
    • P. Thirumalaikumar V.
    • Mary Thomas Sufi
    • G. Thomes Paul
    • Thorburn Andrew
    • Thukral Lipi
    • Thum Thomas
    • Thumm Michael
    • Tian Ling
    • Tichy Ales
    • Till Andreas
    • Timmerman Vincent
    • I. Titorenko Vladimir
    • V. Todi Sokol
    • Todorova Krassimira
    • M. Toivonen Janne
    • Tomaipitinca Luana
    • Tomar Dhanendra
    • Tomas-Zapico Cristina
    • Tomić Sergej
    • Chun-Kit Tong Benjamin
    • Tong Chao
    • Tong Xin
    • A. Tooze Sharon
    • L. Torgersen Maria
    • Torii Satoru
    • Torres-López Liliana
    • Torriglia Alicia
    • G. Towers Christina
    • Towns Roberto
    • Toyokuni Shinya
    • Trajkovic Vladimir
    • Tramontano Donatella
    • Tran Quynh-Giao
    • H. Travassos Leonardo
    • B. Trelford Charles
    • Tremel Shirley
    • P. Trougakos Ioannis
    • P. Tsao Betty
    • P. Tschan Mario
    • Tse Hung-Fat
    • Fu Tse Tak
    • Tsugawa Hitoshi
    • S. Tsvetkov Andrey
    • A. Tumbarello David
    • Tumtas Yasin
    • J. Tuñón María
    • Turcotte Sandra
    • Turk Boris
    • Turk Vito
    • J. Turner Bradley
    • I. Tuxworth Richard
    • K. Tyler Jessica
    • V. Tyutereva Elena
    • Uchiyama Yasuo
    • Ugun-Klusek Aslihan
    • H. Uhlig Holm
    • Ułamek-Kozioł Marzena
    • V. Ulasov Ilya
    • Umekawa Midori
    • Ungermann Christian
    • Unno Rei
    • Urbe Sylvie
    • Uribe-Carretero Elisabet
    • Üstün Suayib
    • N Uversky Vladimir
    • Vaccari Thomas
    • I. Vaccaro Maria
    • F. Vahsen Björn
    • Vakifahmetoglu-Norberg Helin
    • Valdor Rut
    • J. Valente Maria
    • Valko Ayelén
    • B. Vallee Richard
    • M. Valverde Angela
    • van den Berghe Greet
    • van der Veen Stijn
    • van Kaer Luc
    • van Loosdregt Jorg
    • J.L. van Wijk Sjoerd
    • Vandenberghe Wim
    • Vanhorebeek Ilse
    • A. Vannier-Santos Marcos
    • Vannini Nicola
    • Cristina Vanrell M.
    • Vantaggiato Chiara
    • Varano Gabriele
    • Varela-Nieto Isabel
    • Varga Máté
    • Helena Vasconcelos M.
    • Vats Somya
    • G. Vavvas Demetrios
    • Vega-Naredo Ignacio
    • Vega-Rubin-De-Celis Silvia
    • Velasco Guillermo
    • P. Velázquez Ariadna
    • Vellai Tibor
    • Vellenga Edo
    • Velotti Francesca
    • Verdier Mireille
    • Verginis Panayotis
    • Vergne Isabelle
    • Verkade Paul
    • Verma Manish
    • Verstreken Patrik
    • Vervliet Tim
    • Vervoorts Jörg
    • T. Vessoni Alexandre
    • M. Victor Victor
    • Vidal Michel
    • Vidoni Chiara
    • V. Vieira Otilia
    • D. Vierstra Richard
    • Viganó Sonia
    • Vihinen Helena
    • Vijayan Vinoy
    • Vila Miquel
    • Vilar Marçal
    • M. Villalba José
    • Villalobo Antonio
    • Villarejo-Zori Beatriz
    • Villarroya Francesc
    • Villarroya Joan
    • Vincent Olivier
    • Vindis Cecile
    • Viret Christophe
    • Teresa Viscomi Maria
    • Visnjic Dora
    • Vitale Ilio
    • J. Vocadlo David
    • V. Voitsekhovskaja Olga
    • Volonté Cinzia
    • Volta Mattia
    • Vomero Marta
    • von Haefen Clarissa
    • A. Vooijs Marc
    • Voos Wolfgang
    • Vucicevic Ljubica
    • Wade-Martins Richard
    • Waguri Satoshi
    • A. Waite Kenrick
    • Wakatsuki Shuji
    • W. Walker David
    • J. Walker Mark
    • A. Walker Simon
    • Walter Jochen
    • G. Wandosell Francisco
    • Wang Bo
    • Wang Chao-Yung
    • Wang Chen
    • Wang Chenran
    • Wang Chenwei
    • Wang Cun-Yu
    • Wang Dong
    • Wang Fangyang
    • Wang Feng
    • Wang Fengming
    • Wang Guansong
    • Wang Han
    • Wang Hao
    • Wang Hexiang
    • Wang Hong-Gang
    • Wang Jianrong
    • Wang Jigang
    • Wang Jiou
    • Wang Jundong
    • Wang Kui
    • Wang Lianrong
    • Wang Liming
    • Haitian Wang Maggie
    • Wang Meiqing
    • Wang Nanbu
    • Wang Pengwei
    • Wang Peipei
    • Wang Ping
    • Wang Ping
    • Jun Wang Qing
    • Wang Qing
    • Kenneth Wang Qing
    • A. Wang Qiong
    • Wang Wen-Tao
    • Wang Wuyang
    • Wang Xinnan
    • Wang Xuejun
    • Wang Yan
    • Wang Yanchang
    • Wang Yanzhuang
    • Wang Yen-Yun
    • Wang Yihua
    • Wang Yipeng
    • Wang Yu
    • Wang Yuqi
    • Wang Zhe
    • Wang Zhenyu
    • Wang Zhouguang
    • Warnes Gary
    • Warnsmann Verena
    • Watada Hirotaka
    • Watanabe Eizo
    • Watchon Maxinne
    • Wawrzyńska Anna
    • E. Weaver Timothy
    • Wegrzyn Grzegorz
    • M. Wehman Ann
    • Wei Huafeng
    • Wei Lei
    • Wei Taotao
    • Wei Yongjie
    • H. Weiergräber Oliver
    • C. Weihl Conrad
    • Weindl Günther
    • Weiskirchen Ralf
    • Wells Alan
    • H. Wen Runxia
    • Wen Xin
    • Werner Antonia
    • Weykopf Beatrice
    • P. Wheatley Sally
    • Lindsay Whitton J.
    • J. Whitworth Alexander
    • Wiktorska Katarzyna
    • E. Wildenberg Manon
    • Wileman Tom
    • Wilkinson Simon
    • Willbold Dieter
    • Williams Brett
    • S. B. Williams Robin
    • L. Williams Roger
    • R. Williamson Peter
    • A. Wilson Richard
    • Winner Beate
    • J. Winsor Nathaniel
    • S. Witkin Steven
    • Wodrich Harald
    • Woehlbier Ute
    • Wollert Thomas
    • Wong Esther
    • Ho Wong Jack
    • W. Wong Richard
    • Kam Wai Wong Vincent
    • Wei-Lynn Wong W.
    • Wu An-Guo
    • Wu Chengbiao
    • Wu Jian
    • Wu Junfang
    • K. Wu Kenneth
    • Wu Min
    • Wu Shan-Ying
    • Wu Shengzhou
    • Wu Shu-Yan
    • Wu Shufang
    • K.K. Wu William
    • Wu Xiaohong
    • Wu Xiaoqing
    • Wu Yao-Wen
    • Wu Yihua
    • J. Xavier Ramnik
    • Xia Hongguang
    • Xia Lixin
    • Xia Zhengyuan
    • Xiang Ge
    • Xiang Jin
    • Xiang Mingliang
    • Xiang Wei
    • Xiao Bin
    • Xiao Guozhi
    • Xiao Hengyi
    • Xiao Hong-Tao
    • Xiao Jian
    • Xiao Lan
    • Xiao Shi
    • Xiao Yin
    • Xie Baoming
    • Xie Chuan-Ming
    • Xie Min
    • Xie Yuxiang
    • Xie Zhiping
    • Xie Zhonglin
    • Xilouri Maria
    • Xu Congfeng
    • Xu En
    • Xu Haoxing
    • Xu Jing
    • Xu Jinrong
    • Xu Liang
    • Wen Xu Wen
    • Xu Xiulong
    • Xue Yu
    • M.S. Yakhine-Diop Sokhna
    • Yamaguchi Masamitsu
    • Yamaguchi Osamu
    • Yamamoto Ai
    • Yamashina Shunhei
    • Yan Shengmin
    • Yan Shian-Jang
    • Yan Zhen
    • Yanagi Yasuo
    • Yang Chuanbin
    • Yang Dun-Sheng
    • Yang Huan
    • Yang Huang-Tian
    • Yang Hui
    • Yang Jin-Ming
    • Yang Jing
    • Yang Jingyu
    • Yang Ling
    • Yang Liu
    • Yang Ming
    • Yang Pei-Ming
    • Yang Qian
    • Yang Seungwon
    • Yang Shu
    • Yang Shun-Fa
    • Yang Wannian
    • Yuan Yang Wei
    • Yang Xiaoyong
    • Yang Xuesong
    • Yang Yi
    • Yang Ying
    • Yao Honghong
    • Yao Shenggen
    • Yao Xiaoqiang
    • Yao Yong-Gang
    • Yao Yong-Ming
    • Yasui Takahiro
    • Yazdankhah Meysam
    • M. Yen Paul
    • Yi Cong
    • Yin Xiao-Ming
    • Yin Yanhai
    • Yin Zhangyuan
    • Yin Ziyi
    • Ying Meidan
    • Ying Zheng
    • K. Yip Calvin
    • Pei Tung Yiu Stephanie
    • H. Yoo Young
    • Yoshida Kiyotsugu
    • R. Yoshii Saori
    • Yoshimori Tamotsu
    • Yousefi Bahman
    • Yu Boxuan
    • Yu Haiyang
    • Yu Jun
    • Yu Jun
    • Yu Li
    • Yu Ming-Lung
    • Yu Seong-Woon
    • C. Yu Victor
    • Haung Yu W.
    • Yu Zhengping
    • Yu Zhou
    • Yuan Junying
    • Yuan Ling-Qing
    • Yuan Shilin
    • F. Yuan Shyng-Shiou
    • Yuan Yanggang
    • Yuan Zengqiang
    • Yue Jianbo
    • Yue Zhenyu
    • Yun Jeanho
    • L. Yung Raymond
    • N. Zacks David
    • Zaffagnini Gabriele
    • O. Zambelli Vanessa
    • Zanella Isabella
    • S. Zang Qun
    • Zanivan Sara
    • Zappavigna Silvia
    • Zaragoza Pilar
    • S. Zarbalis Konstantinos
    • Zarebkohan Amir
    • Zarrouk Amira
    • O. Zeitlin Scott
    • Zeng Jialiu
    • Zeng Ju-Deng
    • Žerovnik Eva
    • Zhan Lixuan
    • Zhang Bin
    • D. Zhang Donna
    • Zhang Hanlin
    • Zhang Hong
    • Zhang Hong
    • Zhang Honghe
    • Zhang Huafeng
    • Zhang Huaye
    • Zhang Hui
    • Zhang Hui-Ling
    • Zhang Jianbin
    • Zhang Jianhua
    • Zhang Jing-Pu
    • Y.B. Zhang Kalin
    • W. Zhang Leshuai
    • Zhang Lin
    • Zhang Lisheng
    • Zhang Lu
    • Zhang Luoying
    • Zhang Menghuan
    • Zhang Peng
    • Zhang Sheng
    • Zhang Wei
    • Zhang Xiangnan
    • Zhang Xiao-Wei
    • Zhang Xiaolei
    • Zhang Xiaoyan
    • Zhang Xin
    • Zhang Xinxin
    • Dong Zhang Xu
    • Zhang Yang
    • Zhang Yanjin
    • Zhang Yi
    • Zhang Ying-Dong
    • Zhang Yingmei
    • Zhang Yuan-Yuan
    • Zhang Yuchen
    • Zhang Zhe
    • Zhang Zhengguang
    • Zhang Zhibing
    • Zhang Zhihai
    • Zhang Zhiyong
    • Zhang Zili
    • Zhao Haobin
    • Zhao Lei
    • Zhao Shuang
    • Zhao Tongbiao
    • Zhao Xiao-Fan
    • Zhao Ying
    • Zhao Yongchao
    • Zhao Yongliang
    • Zhao Yuting
    • Zheng Guoping
    • Zheng Kai
    • Zheng Ling
    • Zheng Shizhong
    • Zheng Xi-Long
    • Zheng Yi
    • Zheng Zu-Guo
    • Zhivotovsky Boris
    • Zhong Qing
    • Zhou Ao
    • Zhou Ben
    • Zhou Cefan
    • Zhou Gang
    • Zhou Hao
    • Zhou Hongbo
    • Zhou Jie
    • Zhou Jing
    • Zhou Jing
    • Zhou Jiyong
    • Zhou Kailiang
    • Zhou Rongjia
    • Zhou Xu-Jie
    • Zhou Yanshuang
    • Zhou Yinghong
    • Zhou Yubin
    • Zhou Zheng-Yu
    • Zhou Zhou
    • Zhu Binglin
    • Zhu Changlian
    • Zhu Guo-Qing
    • Zhu Haining
    • Zhu Hongxin
    • Zhu Hua
    • Zhu Wei-Guo
    • Zhu Yanping
    • Zhu Yushan
    • Zhuang Haixia
    • Zhuang Xiaohong
    • Zientara-Rytter Katarzyna
    • M. Zimmermann Christine
    • Ziviani Elena
    • Zoladek Teresa
    • Zong Wei-Xing
    • B. Zorov Dmitry
    • Zorzano Antonio
    • Zou Weiping
    • Zou Zhen
    • Zou Zhengzhi
    • Zuryn Steven
    • Zwerschke Werner
    • Brand-Saberi Beate
    • Charlie Dong X.
    • Shekar Kenchappa Chandra
    • Li Zuguo
    • Lin Yong
    • Oshima Shigeru
    • Rong Yueguang
    • C. Sluimer Judith
    • L. Stallings Christina
    • Tong Chun-Kit
    Autophagy, Taylor & Francis, 2021, 17 (1), pp.1-382. In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field. (10.1080/15548627.2020.1797280)
    DOI : 10.1080/15548627.2020.1797280
  • Euryarchaeal genomes are folded into SMC-dependent loops and domains, but lack transcription-mediated compartmentalization
    • Cockram Charlotte
    • Thierry Agnès
    • Gorlas Aurore
    • Lestini Roxane
    • Koszul Romain
    Molecular Cell, Cell Press, 2021, 81 (3), pp.459-472.e10. Hi-C has become a routine method for probing the 3D organization of genomes. However, when applied to prokaryotes and archaea, the current protocols are expensive and limited in their resolution. We develop a cost-effective Hi-C protocol to explore chromosome conformations of these two kingdoms at the gene or operon level. We first validate it on E. coli and V. cholera, generating sub-kilobase-resolution contact maps, and then apply it to the euryarchaeota H. volcanii, Hbt. salinarum, and T. kodakaraensis. With a resolution of up to 1 kb, we explore the diversity of chromosome folding in this phylum. In contrast to crenarchaeota, these euryarchaeota lack (active/inactive) compartment-like structures. Instead, their genomes are composed of self-interacting domains and chromatin loops. In H. volcanii, these structures are regulated by transcription and the archaeal structural maintenance of chromosomes (SMC) protein, further supporting the ubiquitous role of these processes in shaping the higher-order organization of genomes. (10.1016/j.molcel.2020.12.013)
    DOI : 10.1016/j.molcel.2020.12.013
  • Insights into G-Quadruplex–Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding
    • Stadlbauer Petr
    • Islam Barira
    • Otyepka Michal
    • Chen Jielin
    • Monchaud David
    • Zhou Jun
    • Mergny Jean-Louis
    • Šponer Jiří
    Journal of Chemical Theory and Computation, American Chemical Society, 2021, 17 (3), pp.1883 - 1899. Guanine quadruplex nucleic acids (G4s) are involved in key biological processes such as replication or transcription. Beyond their biological relevance, G4s find applications as biotechnological tools since they readily bind hemin and enhance its peroxidase activity, creating a G4-DNAzyme. The biocatalytic properties of G4-DNAzymes have been thoroughly studied and used for biosensing purposes. Despite hundreds of applications and massive experimental efforts, the atomistic details of the reaction mechanism remain unclear. To help select between the different hypotheses currently under investigation, we use extended explicit-solvent molecular dynamics (MD) simulations to scrutinize the G4/hemin interaction. We find that besides the dominant conformation in which hemin is stacked atop the external G-quartets, hemin can also transiently bind to the loops and be brought to the external G-quartets through diverse delivery mechanisms. The simulations do not support the catalytic mechanism relying on a wobbling guanine. Similarly, the catalytic role of the iron-bound water molecule is not in line with our results; however, given the simulation limitations, this observation should be considered with some caution. The simulations rather suggest tentative mechanisms in which the external G-quartet itself could be responsible for the unique H 2 O 2-promoted biocatalytic properties of the G4/hemin complexes. Once stacked atop a terminal G-quartet, hemin rotates about its vertical axis while readily sampling shifted geometries where the iron transiently contacts oxygen atoms of the adjacent G-quartet. This dynamics is not apparent from the ensemble-averaged structure. We also visualize transient interactions between the stacked hemin and the G4 loops. Finally, we investigated interactions between hemin and on-pathway folding intermediates of the parallel-stranded G4 fold. The simulations suggest that hemin drives the folding of parallel-stranded G4s from slip-stranded intermediates, acting as a G4 chaperone. Limitations of the MD technique are briefly discussed. (10.1021/acs.jctc.0c01176)
    DOI : 10.1021/acs.jctc.0c01176
  • Human Papillomavirus G-Rich Regions as Potential Antiviral Drug Targets
    • Carvalho Josué
    • Lopes-Nunes Jéssica
    • Campello Maria Paula Cabral
    • Paulo António
    • Milici Janice
    • Meyers Craig
    • Mergny Jean-Louis
    • Salgado Gilmar
    • Queiroz João
    • Cruz Carla
    Nucleic Acid Therapeutics, Mary Ann Liebert, Inc. publishers, 2021, 31 (1), pp.68-81. Abstract G‐quadruplexes (G4) play crucial roles in biology, analytical chemistry and nanotechnology. The stability of G4 structures is impacted by the number of G‐quartets, the length and positions of loops, flanking motifs, as well as additional structural elements such as bulges, capping base pairs, or triads. Algorithms such as G4Hunter or Quadparser may predict if a given sequence is G4‐prone by calculating a quadruplex propensity score; however, experimental validation is still required. We previously demonstrated that this validation is not always straightforward, and that a combination of techniques is often required to unambiguously establish whether a sequence forms a G‐quadruplex or not. In this article, we adapted the well‐known FRET‐melting assay to characterize G4 in batch, where the sequence to be tested is added, as an unlabeled competitor, to a system composed of a dual‐labeled probe (F21T) and a specific quadruplex ligand. PhenDC3 was preferred over TMPyP4 because of its better selectivity for G‐quadruplexes. In this so‐called FRET‐MC (melting competition) assay, G4‐forming competitors lead to a marked decrease of the ligand‐induced stabilization effect (∆ T m ), while non‐specific competitors (e.g., single‐ or double‐stranded sequences) have little effect. Sixty‐five known sequences with different typical secondary structures were used to validate the assay, which was subsequently employed to assess eight novel sequences that were not previously characterized. (10.1089/nat.2020.0869)
    DOI : 10.1089/nat.2020.0869
  • Targeting nucleolin by RNA G-quadruplex-forming motif
    • Figueiredo Joana
    • Miranda André
    • Lopes-Nunes Jéssica
    • Carvalho Josué
    • Alexandre Daniela
    • Valente Salete
    • Mergny Jean‐louis
    • Cruz Carla
    Biochemical Pharmacology, Elsevier, 2021, 189, pp.114418. (10.1016/j.bcp.2021.114418)
    DOI : 10.1016/j.bcp.2021.114418
  • Cyclodipeptide synthases of the NYH subfamily recognize tRNA using an α-helix enriched with positive residues
    • Croitoru Anastasia
    • Babin Morgan
    • Myllykallio Hannu
    • Gondry Muriel
    • Aleksandrov Alexey
    Biochemistry, American Chemical Society, 2021, 60 (1), pp.64-76. Cyclodipeptide synthases (CDPSs) perform nonribosomal protein synthesis using two aminoacyl-tRNA substrates to produce cyclodipeptides. There is no available structural detail on the CDPS:tRNA interaction to date. Using AlbC, a CDPS that produces cyclo(L-Phe-L-Phe), the interaction between AlbC with its Phe-tRNA substrate was investigated. Simulations of models of the AlbC:tRNA complex, proposed by rigid body docking or homology modeling, demonstrated that interactions with residues of an AlbC alpha helix, α4, significantly contribute to the binding free energy of AlbC to tRNA. Individual residue contributions to the tRNA binding free energy of the discovered binding mode explain well available biochemical data, and the results of in vivo assay experiments performed in this work and guided by simulations. In molecular dynamics simulations the phenylalanyl group predominantly occupied the two positions observed in the experimental structure of AlbC in the dipeptide intermediate state, suggesting that tRNAs of the first and second substrates interact with AlbC in a similar manner. Overall, given the high sequence and structural similarity among the members of the CDPS NYH protein subfamily, the mechanism of the protein:tRNA interaction is expected to be pertinent to a wide range of tRNA interacting proteins. (10.1021/acs.biochem.0c00761)
    DOI : 10.1021/acs.biochem.0c00761
  • Gene level resolution of bacteria and archaea genome folding
    • Cockram Charlotte
    • Thierry Agnès
    • Lestini Roxane
    • Koszul Romain
    , 2021.